Answer:
The new equilibrium total pressure will be increased to one-half to initial total pressure.
Explanation:
From the information given :
The equation of the reaction can be represented as;

From above equation:
2 moles of sulphur dioxide reacts with 1 mole of oxygen (i.e 2 moles +1 mole =3 moles ) to give 2 moles of sulphur trioxide
So; suppose the volume of this system is compressed to one-half its initial volume and then equilibrium is reestablished.
So if this process takes place ; the equilibrium will definitely shift to the side with fewer moles , thus the equilibrium will shift to the right. As such; there is increase in pressure.
Let the total pressure at the initial equilibrium be 
and the total pressure at the final equilibrium be 
According to Boyle's Law; Boyle's Law states that the pressure of a fixed mass of gas is inversely proportional to the volume, provided the temperature remains constant.
Thus;
P ∝ 1/V
P = K/V
PV = K
where K = constant
So;
PV = constant
Hence;

From the foregoing; since the volume is decreased to one- half to initial Volume; then ,

also;
Thus ;



Dividing both sides by 


From ;




Thus; The new equilibrium total pressure will be increased to one-half to initial total pressure.
Answer:
pH =3.8
Explanation:
Lets call the monoprotic weak acid HA, the dissociation equilibria in water will be:
HA + H₂O ⇄ H₃O⁺ + A⁻ with Ka = [ H₃O⁺] x [A⁻]/ [HA]
The pH is the negative log of the H₃O⁺ concentration, we know the equilibrium constant, Ka and the original acid concentration. So we will need to find the [H₃O⁺] to solve this question.
In order to do that lets set up the ICE table helper which accounts for the species at equilibrium:
HA H₃O⁺ A⁻
Initial, M 0.40 0 0
Change , M -x +x +x
Equilibrium, M 0.40 - x x x
Lets express these concentrations in terms of the equilibrium constant:
Ka = x² / (0.40 - x )
Now the equilibrium constant is so small ( very little dissociation of HA ) that is safe to approximate 0.40 - x to 0.40,
7.3 x 10⁻⁶ = x² / 0.40 ⇒ x = √( 7.3 x 10⁻⁶ x 0.40 ) = 1.71 x 10⁻³
[H₃O⁺] = 1.71 x 10⁻³
Indeed 1.71 x 10⁻³ is small compared to 0.40 (0.4 %). To be a good approximation our value should be less or equal to 5 %.
pH = - log ( 1.71 x 10⁻³ ) = 3.8
Note: when the aprroximation is greater than 5 % we will need to solve the resulting quadratic equation.
you have to show us the rest of it because we have no idea what your looking at. I'm sorry
A.
→ 
B.
→ 
C.
→ 
What is a balanced chemical equation?
An equation that has an equal number of atoms of each element on both sides of the equation is called a balanced chemical equation.
A.
→ 
B.
→ 
C.
→ 
Learn more about the balanced chemical equation here:
brainly.com/question/15052184
#SPJ1
Answer:
The average atomic mass of an element is the sum of the masses of its isotopes, each multiplied by its natural abundance (the decimal associated with percent of atoms of that element that are of a given isotopе). An element does not have an absolute atomic mass.
<em>Hope</em><em> this</em><em> </em><em>helps</em><em> </em><em>:</em><em>)</em>