Answer: the wavelength of this transition is 1.2039 um
Explanation:
Given that;
the energy level between the transitioning energy gap Eg = 1.0 + 0.03 = 1.03 eV
we know that λ = 1.24 / Eg
so we substitute our Eg into the above equation
λ = 1.24 / 1.03
λ = 1.2039 um
therefore the wavelength of this transition is 1.2039 um
If the echo (the reflected sound) reaches your ear less than about
0.1 second after the original sound, your brain doesn't separate them,
and you're not aware of the echo even though it's there.
If the echo comes from, say, a wall, 0.1 second means you'd have to be
about 17 meters away from the wall. If you're closer than that, then the
echo reaches you in less than 0.1 second and you're not aware of it.
A. 30 meters . . .
No. You hear that echo easily
B. you're standing within range of both sounds . . .
No. You hear that echo easily, if you're at least 17 meters from the wall.
C. less than 0.1 second later . . .
That's it. The echo is there but your brain doesn't know it.
D. 21.5 meters
No. You hear that echo easily.
I’d think the answer would be C. i’m just kinda guessing but my thought process is this (as simply as i can put it because physics is confusing):
so for example say you throw a ball across a flat surface. inertia is what keeps the ball rolling straight in a line, so unless you were to maybe put your hand in front of the ball or something, it would just go straight forever.
this is what happens with the planets. they go in a straight line, but since there’s gravity, the planets are also being pulled towards the sun. so gravity and inertia are why the planets orbit in the circle pattern they do. so when we remove inertia, we’re removing the state in which the planets keep going straight while being pulled towards a center point (the sun). this causes gravity to be the only factor in the planets orbiting. so that being said, the planets would just be pulled towards the sun. :)
Answer:
The decrease of these factors increases the acceleration.
Explanation:
Hi, the decrease of these factors increases the acceleration.
Air resistance is a force opposing the acceleration. So if it decreases, the acceleration increases, because the opposite forces decreases.
The same is applied to the force of gravity, since the rocket travels upward; gravity is also an opposite force.
Finally, if the mass decreases, it means that the rocket becomes lighter and the force acting on the smaller mass causes an increase in the acceleration.