Answer = Matter.
Matter is anything that has mass and takes up space.
______________________________________________
Other solutions may be :
Energy
_______________________________________________
i really hope this helps you a lot , have a nice day : )
Answer: Spring tides occur when the moon is full or new. Earth, the moon, and the Sun are in a line. The moon’s gravity and the Sun’s gravity pull Earth’s crust and ocean water. This causes tides to be higher than normal.
At neap tide, the moon and the Sun are at right angles to each other. This happens during the first and third quarters of the lunar cycle. At neap tide, the Sun’s gravity and the moon’s gravity are balanced. High tides are lower; low tides are higher.
Explanation:
<u>i just took the Assignment !</u>
Answer:
100 Joules
Explanation:
Applying,
W = mgh................... Equation 1
Where W = workdone to hold the box above the ground, mg = weight of the box, h = height of the box.
From the question,
Given: mg = 10 newtons, h = 10 meters.
Substitute these values into equation 1
W = 10×10
W = 100 Joules.
Hence the amount of workdone is 100 Joules
Answer:
24.71cm
Explanation:
We approach this problem base don Hooke's law which states the elongation produced in an elastic material is proportional to the applied load or force provided that its elastic limit is not exceeded. This is expressed mathematically as follows;

where F is the applied force, k is the force constant and e is the elongation or extension of the material.
In this problem, the applied force F is the weight of the wood which is calculated as follows,

m = 4.11kg

Hence,

Given that k = 163N/m, we make appropriate substitutions into equation (1) to obtain the following;

Since it is required in cm, we perform the conversion as follows, knowing that 100cm = 1m

NB: We do not necessarily need the the density of the wood to perform our calculations since other parameters were given from which we were able to obtain its weight.
Answer:
The system's kinetic energy changes by 3.6 J
Explanation:
The given parameters are;
The number of cart = 2
The mass of each cart = 0.5kg
The initial length of the spring = 0.50 m
The final length of the spring =T0.3 m
The change in position of the first cart = 0.6 m
The energy given to the first cart = Work done by the force = Force × Displacement
The initial kinetic energy of the two cart moving together = Energy given to the first cart = 6.0 × 0.2 = 1.2J
The kinetic energy given to the two cart combined = The applied force × The total displacement of the two cart as they move together
The kinetic energy given to the two cart combined = 6.0 × (0.6 - 0.2)
The kinetic energy given to the two cart combined = 6.0 × 0.4 = 2.4 J
The total kinetic energy given to the two cart = 1.2 + 2.4 = 3.6 J
The total kinetic energy given to the two cart = 3.6 J
The system's kinetic energy changes by 3.6 J.