1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ber [7]
3 years ago
14

Amoebas have projections called pseudopods. What are they used for

Physics
1 answer:
Dvinal [7]3 years ago
8 0

Answer:

Amoebas have projections called pseudopods

Explanation:

Pseudopodia is the locomatary organ of amoeba. It helps them in movement and transportation.

You might be interested in
Cesium-137 undergoes beta decay and has a half-life of 30.0 years. How many beta particles are emitted by a 14.0-g sample of ces
Mandarinka [93]

Answer: 0.81\times 10^{16} beta particles

Explanation:

\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}

Given mass = 14.0 g

Molar mass = 137 g/mol

\text{Number of moles of cesium}=\frac{14.0g}{137g/mol}=0.102moles

According to avogadro's law, 1 mole of every substance weighs equal to its molecular mass and contains avogadro's number 6.023\times 10^{23} of particles.

1 mole of cesium contains atoms =  6.023\times 10^{23}

0.102 moles of cesium contains atoms =  \frac{6.023\times 10^{23}}{1}\times 0.102=0.614\times 10^{23}

The relation of atoms with time for radioactivbe decay is:

N_t=N_0\times \frac{1}{2}^{\frac{t}{t_{\frac{1}{2}}}}

Where N_t =atoms left undecayed

N_0 = initial atoms

t = time taken for decay = 3 minutes

{t_{\frac{1}{2}}} = half life = 30.0 years = 1.577\times 10^7 minutes

The fraction that decays  :  1-(\frac{1}{2})^{\frac{3}{1.577\times 10^7}}=1.32\times 10^{-7}

Amount of particles that decay is  = 0.614\times 10^{23}\times 1.32\times 10^{-7}=0.81\times 10^{16}

Thus 0.81\times 10^{16} beta particles are emitted by a 14.0-g sample of cesium-137 in three minutes.

7 0
3 years ago
Calculate the acceleration of a 1000 kg car if the motor provides a small thrust of 1000 N and the static and dynamic friction c
grin007 [14]

Explanation :

It is given that,

Mass of the car, m = 1000 kg              

Force applied by the motor, F_A=1000\ N

The static and dynamic friction coefficient is, \mu=0.5

Let a is the acceleration of the car. Since, the car is in motion, the coefficient of sliding friction can be used. At equilibrium,

F_A-\mu mg=ma

\dfrac{F_A-\mu mg}{m}=a

a=\dfrac{1000-0.5(1000)(9.81)}{1000}

a=-3.905\ m/s^2

So, the acceleration of the car is -3.905\ m/s^2. Hence, this is the required solution.

6 0
3 years ago
Need help please ASAP 39 points ???? 4 questions each have to be a paragraph the directions are there ?????
Hunter-Best [27]

Answer:

1) Magnetic resonance imaging (MRI) is a test that uses powerful magnets, radio waves, and a computer to make detailed pictures of the inside of your body.

Your doctor can use this test to diagnose you or to see how well you've responded to treatment. Unlike X-rays and computed tomography (CT) scans, MRIs don’t use the damaging ionizing radiation of X-rays.

2) MRIs employ powerful magnets which produce a strong magnetic field that forces protons in the body to align with that field. When a radiofrequency current is then pulsed through the patient, the protons are stimulated, and spin out of equilibrium, straining against the pull of the magnetic field.

3)  Magnetic resonance imaging (MRI) uses a large magnet and radio waves to look at organs and structures inside your body. Health care professionals use MRI scans to diagnose a variety of conditions, from torn ligaments to tumors. MRIs are very useful for examining the brain and spinal cord.

4) The magnetic fields that change with time create loud knocking noises which may harm hearing if adequate ear protection is not used. They may also cause peripheral muscle or nerve stimulation that may feel like a twitching sensation. The radiofrequency energy used during the MRI scan could lead to heating of the body.

pls mark brainliest

4 0
3 years ago
Maurice pulls on the end of a spring scale. He lets go of the end and observes the spring snap back into place. What force resto
Zina [86]

Elastic

Explanation is that it is force which is snapping back

7 0
4 years ago
Read 2 more answers
Um móvel realiza movimento retilíneo uniformemente
Alona [7]
B is the correct answer hope that helped
8 0
3 years ago
Other questions:
  • A motor is used to operate a lift. There is a man in the lift. The input power of the motor is 6200 watts. The lift and the man
    8·1 answer
  • 3. Ohm’s Law is represented by the equation I=V/R. Explain how the current would change if the amount of resistance decreased an
    15·1 answer
  • In the SI system of units, dynamic viscosity of water μ at temperature T (K) can be computed from μ=A10B/(T-C), where A=2.4×10-5
    11·1 answer
  • What are the differences between deterministic forces and thermal agitation?
    13·1 answer
  • A child of mass 47 kg sits on the edge of a merry-go-round with radius 1.3 m and moment of inertia 56.3953 kg m2 . The merrygo-r
    15·1 answer
  • An object has an acceleration of 18.0 m/s/s. If the net force was doubled and the mass were tripled then the new acceleration wo
    8·1 answer
  • A 20-kg block is held at rest on the inclined slope by a peg. A 2-kg pendulum starts at rest in a horizontal position when it is
    7·1 answer
  • A monument has a height of 348 ft, 8 in. Express this height in meters. Answer in units of m.
    5·1 answer
  • A book is sitting on a table, completely still. What would happen if gravity suddenly stopped affecting the book? A. The book wo
    5·1 answer
  • According to the FITT Principle you should exercise how many days ?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!