Heya
ques is what is cellular respiration?
the ans is Exchanging O2 for CO2 in the blood within the lungs.
thank u
There are 6.022 × 10²³ atoms in 39.948 g of argon and 4.0026 g of helium.
Explanation:
39.945 g/mole is the molar mass of argon so 39.948 g of argon are equal to 1 mole of argon.
4.0026 g/mole is the molar mass of helium so 4.0026 g of helium are equal to 1 mole of helium.
We know that Avogadro's number tell us the number of particles in 1 mole of substance which is 6.022 × 10²³.
So in 39.948 g of argon and 4.0026 g of helium contains the same number of atoms, 6.022 × 10²³.
Learn more about:
Avogadro's number
brainly.com/question/14148121
brainly.com/question/1445383
brainly.com/question/1528951
#learnwithBrainly
Answer:
A. amount of precipitation, average temperature
Explanation:
Precipitation and average temperature are factors that climate includes. These factors are determined by other factors such as location of an area(like how far a place is from large bodies of water like the sea), ocean currents, lattitude (distance from the equator), winds (prevailing winds) , topography (such as mountains) and the like.
A buffer is a solution that can resist pH change upon the addition of an acidic or basic components. It is able to neutralize small amounts of added acid or base, thus maintaining the pH of the solution relatively stable. This is important for processes and/or reactions which require specific and stable pH ranges. Buffer solutions have a working pH range and capacity which dictate how much acid/base can be neutralized before pH changes, and the amount by which it will change.
Answer:
0.4694 moles of CrCl₃
Explanation:
The balanced equation is:
Cr₂O₃(s) + 3CCl₄(l) → 2CrCl₃(s) + 3COCl₂(aq)
The stoichiometry of the equation is how much moles of the substances must react to form the products, and it's represented by the coefficients of the balanced equation. So, 1 mol of Cr₂O₃ must react with 3 moles of CCl₄ to form 2 moles of CrCl₃ and 3 moles of COCl₂.
The stoichiometry calculus must be on a moles basis. The compounds of interest are Cr₂O₃ and CrCl₃. The molar masses of the elements are:
MCr = 52 g/mol
MCl = 35.5 g/mol
MO = 16 g/mol
So, the molar mass of the Cr₂O₃ is = 2x52 + 3x35.5 = 210.5 g/mol.
The number of moles is the mass divided by the molar mass, so:
n = 49.4/210.5 = 0.2347 mol of Cr₂O₃.
For the stoichiometry:
1 mol of Cr₂O₃ ------------------- 2 moles of CrCl₃
0.2347 mol of Cr₂O₃----------- x
By a simple direct three rule:
x = 0.4694 moles of CrCl₃