Flammability is a chemical change because when you burn something, it no longer has the same properties.
First let us determine the electronic configuration of
Bromine (Br). This is written as:
Br = [Ar] 3d10 4s2 4p5
Then we must recall that the greatest effective nuclear
charge (also referred to as shielding) greatly increases as distance of the
orbital to the nucleus also increases. So therefore the electron in the
farthest shell will experience the greatest nuclear charge hence the answer is:
<span>4p orbital</span>
Answer:
ΔG=ΔG0+RTlnQ where Q is the ratio of concentrations (or activities) of the products divided by the reactants. Under standard conditions Q=1 and ΔG=ΔG0 . Under equilibrium conditions, Q=K and ΔG=0 so ΔG0=−RTlnK . Then calculate the ΔH and ΔS for the reaction and the rest of the procedure is unchanged.
Explanation:
Answer:
Radiation is being released from the reactor.
Explanation:
( A P E X )
Mass of water produced : 0.146 g
<h3>Further explanation</h3>
Given
33.2 mL of 0.245 M lithium hydroxide
Required
mass of water
Solution
Reaction
HNO₃ (aq) + LiOH (aq) → H₂O (l) + LiNO₃ (aq)
mol LiOH :
= M x V
= 0.245 x 33.2 ml
= 8.134 mmol
From the equation, the mol ratio of HNO₃ : H₂O = 1 : 1, so mol H₂O = 8.134 mmol
mass H₂O :
= mol x MW
= 8.134 x 10⁻³ mol x 18 g/mol
= 0.146 g