Answer:
Chemical
Explanation:
The change was chemical, because it can no longer be returned to the original form. You cannot get back the bubbles or fizz from the air.
Answer:
0.185M sulfuric acid
Explanation:
Based on the reaction:
H₂SO₄ + 2KOH → K₂SO₄ + 2H₂O
<em>1 mole of sulfuric acid reacts with 2 moles of KOH</em>
Initial moles of H₂SO₄ and KOH are:
H₂SO₄: 0.750L ₓ (0.470mol / L) = <em>0.3525 moles of H₂SO₄</em>
KOH: 0.700L ₓ (0.240mol / L) = <em>0.168 moles of KOH</em>
The moles of sulfuric acis that react with KOH are:
0.168mol KOH ₓ (1 mole H₂SO₄ / 2 moles KOH) = 0.0840 moles of sulfuric acid.
Thus, moles that remain are:
0.3525moles - 0.0840 moles = <em>0.2685 moles of sulfuric acid remains</em>
As total volume is 0.700L + 0.750L = 1.450L, concentration is:
0.2685mol / 1.450L = <em>0.185M sulfuric acid</em>
Squeezing just the juices out of the orange, like with your hand or whatever you use, is a physical change. yes :)
Answer:
Close to the calculated endpoint of a titration - <u>Partially open</u>
At the beginning of a titration - <u>Completely open</u>
Filling the buret with titrant - <u>Completely closed</u>
Conditioning the buret with the titrant - <u>Completely closed</u>
Explanation:
'Titration' is depicted as the process under which the concentration of some substances in a solution is determined by adding measured amounts of some other substance until a rection is displayed to be complete.
As per the question, the stopcock would remain completely open when the process of titration starts. After the buret is successfully placed, the titrant is carefully put through the buret in the stopcock which is entirely closed. Thereafter, when the titrant and the buret are conditioned, the stopcock must remain closed for correct results. Then, when the process is near the estimated end-point and the solution begins to turn its color, the stopcock would be slightly open before the reading of the endpoint for adding the drops of titrant for final observation.
Answer:
Explanation:
Chemical potential energy is the chemical energy stored (or property) of a substance. One chemical potential energy of wood is combustion. Combustion involves the burning of a substance in excess oxygen (in this case open air). <u>The chemical energy stored here is transformed to thermal/heat energy after combustion due to the large amount of heat evolved/produced</u>.
NOTE:
The model above also that combustion is an exothermic reaction because it involves the release of heat into it's surrounding.