Answer:

Step-by-step explanation:
Assuming this complete question:
"Suppose a certain species of fawns between 1 and 5 months old have a body weight that is approximately normally distributed with mean
kilograms and standard deviation
kilograms. Let x be the weight of a fawn in kilograms. Convert the following z interval to a x interval.
"
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Solution to the problem
Let X the random variable that represent the weights of a population, and for this case we know the distribution for X is given by:
Where
and 
And the best way to solve this problem is using the normal standard distribution and the z score given by:

We know that the Z scale and the normal distribution are equivalent since the Z scales is a linear transformation of the normal distribution.
We can convert the corresponding z score for x=42.6 like this:

So then the corresponding z scale would be:

Answer:
Given: circle
diameter = 10 cm => radius (R) = 5 cm
Find: measure of angle bounding sector = 11 π sq. cm.
Plan: determine what part of the circle’s total area equals the sector’s area.
Total Area of Circle A = π R^2 = π 5^2 = 25 π sq. cm.
Therefore: Sector Area = 11 π cm^2/25 π cm^2 = 11/25
Since the sector is 11/25 th of the circles area, the sector angle will measure 11/25 th of the circle’s circumference. They are proportional.
C = 2 π R = 2 π (5) = 10 π cm
Sector Arc = measure of sector angle = 11/25 (10 π) =
22π/5 radians
Answer: Sector Arc = 22π/5 Radians
Answer:
False
Take water heating up for example. Heat travels just from...heat!
Answer:
C. 8
Step-by-step explanation:
still using the equation a^2 = b^2 = c^2
Answer:
I need this answer too !!!