Answer:
equation for perpendicular bisector passing through CB is;
y=⁴/³– 5/30
Answer:
Ugh Once again I need help please help!
Step-by-step explanation:
Ugh Once again I need help please help!
Answer:
60°, arms 6
Step-by-step explanation:
let the total arms = n
total generated angles in a regular polygon is = (n-2)×180
now,
(n-2)×180 = 120 n
or, 180n - 360 =120n
or, 60n = 360
or, n = 6
First, plot the points. Point R would be somewhere in the second Quadrant, point M would be in the first quadrant 1, point B would be in the fourth quadrant, and point S would be on the negative y-axis. A property of rhombi is that their diagonals are perpendicular. One would need to calculate the slopes of the diagonals and determine whether or not they are perpendicular. Lines are perpendicular if and only if their slopes are opposite reciprocals. Example: 2 and -0.5
Formulas needed:
Slope formula:

The figure would look kinda like this:
R
M
S
B
Diagonals are segment RB and segment SM
So, your slope equations would look like this:

and

Slope of RB= -1
Slope of SM=7
Not a rhombus, slopes aren't perpendicular. But this figure may very well be a parallelogram
Answer: The difference cannot be found because the indices of the radicals are not the same.
Step-by-step explanation:
To find the difference you need to subtract the radicals. But it is important ot remember the following: To make the subtraction of radicals, the indices and the radicand must be the same.
In this case you have these radicals:
![\sqrt[ {8ab}^{3} ]{{ac}^{2} }- \sqrt[ {14ab}^{3}]{{ac}^{2} }](https://tex.z-dn.net/?f=%5Csqrt%5B%20%7B8ab%7D%5E%7B3%7D%20%5D%7B%7Bac%7D%5E%7B2%7D%20%7D-%20%5Csqrt%5B%20%7B14ab%7D%5E%7B3%7D%5D%7B%7Bac%7D%5E%7B2%7D%20%7D)
You can observe that the radicands are the same, but their indices are not the same.
Therefore, since the indices are different you cannot subtract these radicals.