Answer:
Shown by explanation;
Explanation:
The heat of the sample = mass ×specific heat capacity of the sample × temperature change(∆T)
Assumption;I assume the mass of the samples are : 109g and 192g
∆T= 30.1-21=8.9°c.
The heat of the samples are for 109g are:
0.109 × 4186 × 8.9 =4060.84J
For 0.192g are;
∆T= 67-30.1-=36.9°c
0.192 × 4186×36.9=29656.97J
The mitochondria is the powerhouse of the cell because it takes nutrients and breaks it down to provide energy for the cell.
Explanation:
The equation of motion of an object is given by :

Where
t is the time in seconds
We need to find the time when the object hits the ground. When the object hits the ground, h(t) = 0
So,


On solving above equation using online calculator, t = 8 seconds. So, the object hit the ground after 8 seconds. Hence, this is the required solution.
For the answer to the question above, first find out the gradient.
<span>m = rise/run </span>
<span>=(y2-y1)/(x2-x1) </span>
<span>the x's and y's are the points given: "After three hours, the velocity of the car is 53 km/h. After six hours, the velocity of the car is 62 km/h" </span>
<span>(x1,y1) = (3,53) </span>
<span>(x2,y2) = (6,62) </span>
<span>sub values back into the equation </span>
<span>m = (62-53)/(6-3) </span>
<span>m = 9/3 </span>
<span>m = 3 </span>
<span>now we use a point-slope form to find the the standard form </span>
<span>y-y1 = m(x-x1) </span>
<span>where x1 and y1 are any set of point given </span>
<span>y-53 = 3(x-3) </span>
<span>y-53 = 3x - 9 </span>
<span>y = 3x - 9 + 53 </span>
<span>y = 3x + 44 </span>
<span>y is the velocity of the car, x is the time.
</span>I hope this helps.
Answer: 30m
Explanation:
Given:
Speed: 1.5m/s
Time: 20 seconds
Distance = speed × time
Distance = 1.5 × 20
= 30m
Therefore you will travel 30m
Must click thanks and mark brainliest