The food package will strike the ground at 11 degrees below the horizontal.
<h3>Time for the food package to hit the ground</h3>
The time for the food package to hit the ground is calculated as follows;
h = vt + ¹/₂gt²
<em>let the initial velocity be horizontal</em>
4900 = 0(t) + (0.5 x 9.8)t²
4900 = 4.9t²
t² = 4900/4.9
t² = 1,000
t = √1,000
t = 31.62 s
<h3> Final speed of the food package when it hits ground</h3>
vf(y) = vo + gt
vf(y) = 0 + (31.62 x 9.8)
vf(y) = 309.88 m/s
<h3>Angle of projection</h3>
The horizontal component of the speed will be constant, while vertical component will change

Angle below the horizontal = 90 - 79 = 11⁰
Thus, the food package will strike the ground at 11 degrees below the horizontal.
Learn more about angle of projection here: brainly.com/question/10671136
Answer:
Tension on tendon = 1669800N
Explanation:
Detailed explanation and calculation is shown in the image below
Answer:
B. has a smaller frequency
C. travels at the same speed
Explanation:
The wording of the question is a bit confusing, it should be short/long for wavelength and low/high for frequency. I assume low wavelength mean short wavelength.
All sound wave travel with the same velocity(343m/s) so wavelength doesn't influence its speed at all. It won't be faster or slower, it will have the same speed.
Velocity is a product of wavelength and frequency. So, a long-wavelength sound wave should have a lower frequency.
The option should be:
A. travels slower -->false
B. has a smaller frequency -->true
C. travels at the same speed --->true
D. has a higher frequency --->false
E. travels faster has the same frequency --->false
The radial velocity method preferentially detects large planets close to the central star
- what is the Radial velocity:
The radial velocity technique is able to detect planets around low-mass stars, such as M-type (red dwarf) stars.
This is due to the fact that low mass stars are more affected by the gravitational tug of planets.
When a planet orbits around a star, the star wobbles a little.
From this, we can determine the mass of the planet and its distance from the star.
hence we can say that,
option D is correct.
The radial velocity method preferentially detects large planets close to the central star
Learn more about radial velocity here:
<u>brainly.com/question/13117597</u>
#SPJ4
Answer:
Propels in the opposite direction
Explanation: