Answer:
a = (v2 - v1) / t
From A to B (8 - 4) m/s / 1 s = 4 m / s^2
From A to D ( 7 - 4) m/s / 5 s = .6 m / s^2
Note these equations hold for "uniform" values
They say nothing about the acceleration at intermediate points - the equation just says that his average speed increased from 4 m/s to 7 m/s during a 5 sec period
KE = 2000 J
Explanation:
KE = (1/2)mv^2
= (1/2)(0.100 kg)(200 m/s)^2
= 2000 J
Solution :
Speed of the air craft,
= 262 m/s
Fuel burns at the rate of,
= 3.92 kg/s
Rate at which the engine takes in air,
= 85.9 kg/s
Speed of the exhaust gas that are ejected relative to the aircraft,
=921 m/s
Therefore, the upward thrust of the jet engine is given by

F = 85.9(921 - 262) + (3.92 x 921)
= 4862635.79 + 3610.32
= 
Therefore thrust of the jet engine is
.
<span>So we want to know why is there a difference between the force of gravity on the Moon and the force of gravity of the Earth. So the gravitational force between two objects depends on the masses of both objects. That can be seen from Newtons universal law of gravity. F=G*m1*m2*(1/r^2). So lets say we are holding an object of mass m=1kg on a height r=1m on the Moon and we are holding the same object on the Earth also on the same height of r=1m. The Gravitational force on the Earth will be Fg=G*M*m*(r^2) where M is the mass of the Earth. The force between the moon and that object will be Fg=G*n*m*(r^2), where n is the mass of the moon. Since mass of the Moon is much smaller than mass of the Earth, The gravitational force between the Moon and that body will be almost 6 times smaller than the gravitational force between the Earth and that body. So the correct answer is B. </span>
Most likely, C. the Moon does not have a liquid core (this is what would create a magnetic field) is correct.
I hope this enough to help you!