Answer:
C. 1/8
Step-by-step explanation:
You gotta find the LCD and combine
Answer:
6/5
Step-by-step explanation:
I hope that it's a clear solution.
Answer:
B. You have to distribute properties. So you distribute the exponent 5 to both the 6 & the 9
Answer:
0.281 = 28.1% probability a given player averaged less than 190.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
A bowling leagues mean score is 197 with a standard deviation of 12.
This means that 
What is the probability a given player averaged less than 190?
This is the p-value of Z when X = 190.



has a p-value of 0.281.
0.281 = 28.1% probability a given player averaged less than 190.
<h3>
Answer: (4,2)</h3>
==============================================================
Explanation:
C is at (0,0). Ignore the other points.
Reflecting over y = 1 lands the point on (0,2) because we move 1 unit up to arrive at the line of reflection, and then we keep going one more unit (same direction) to complete the full reflection transformation. I'll call this point P.
Then we reflect point P over the line x = 2 to arrive at the location Q = (4,2). Note how we moved 2 units to the right to get to the line of reflection, and then keep moving the same direction 2 more units, then we have applied the operation of "reflect over the line x = 2"
So we have started at C = (0,0), moved to P = (0,2) and then finally arrived at the destination Q = (4,2). This is the location of C' as well.
All of this is shown in the diagram below.