<h2>
Answer:</h2>
800gm
<h2>
Explanation:</h2>
Archimedes principle states that when an object is immersed in a liquid there is an apparent loss of weight of the object. This apparent loss of weight is also the upthrust experienced by the liquid. The upthrust is equal to the weight of the liquid displaced.
Following from the above statement, when the body of volume 100c.c is immersed in the water contained in the jar, the upthrust experienced is equal to the weight of the water displaced.
<em>Note: In the question, weight is measured just using the mass.</em>
Mass (m) is the product of density (ρ) of liquid (which is water in this case) and volume (v) of body immersed. i.e
m = ρ x v
Where;
ρ = 1 gm/cm³
v = 100c.c = 100cm³
=> m = 1 gm/cm³ x 100cm³
=> m = 100gm
Therefore the weight of water displaced is 100gm
Now, the weight of the water and jar after immersion is the sum of the weight of water and jar before immersion, and the weight of the water displaced. i.e
Weight of water and jar after immersion = 700gm + 100gm = 800gm
Answer:
a) 
b) This value of specific heat is close to the specific heat of ice at -40° C and the specific heat of peat (a variety of coal).
c) The material is peat, possibly.
d) The material cannot be ice because ice doesn't exists at a temperature of 100°C.
Explanation:
Given:
- mass of aluminium,

- mass of water,

- initial temperature of the system,

- mass of copper block,

- temperature of copper block,

- mass of the other block,

- temperature of the other block,

- final equilibrium temperature,

We have,
specific heat of aluminium, 
specific heat of copper, 
specific heat of water, 
Using the heat energy conservation equation.
The heat absorbed by the system of the calorie-meter to reach the final temperature.



The heat released by the blocks when dipped into water:

where
specific heat of the unknown material
For the conservation of energy : 
so,


b)
This value of specific heat is close to the specific heat of ice at -40° C and the specific heat of peat (a variety of coal).
c)
The material is peat, possibly.
d)
The material cannot be ice because ice doesn't exists at a temperature of 100°C.
<h2>
Answer:</h2>
Motor
<h2>
Explanation:</h2>
A motor is a machine that converts electrical energy into mechanical energy. In motors, electric energy is converted into mechanic energy when a magnetic torque acts on a conductor that carries a current. There are different types of motors like DC and AC motors. The moving part of a motor is called the rotor while the stationary part is called stator
Answers:
a) -171.402 m/s
b) 17.49 s
c) 1700.99 m
Explanation:
We can solve this problem with the following equations:
(1)
(2)
(3)
Where:
is the bomb's final height
is the bomb's initial height
is the bomb's initial vertical velocity, since the airplane was moving horizontally
is the time
is the acceleration due gravity
is the bomb's range
is the bomb's initial horizontal velocity
is the bomb's final velocity
Knowing this, let's begin with the answers:
<h3>b) Time
</h3>
With the conditions given above, equation (1) is now written as:
(4)
Isolating
:
(5)
(6)
(7)
<h3>a) Final velocity
</h3>
Since
, equation (3) is written as:
(8)
(9)
(10) The negative sign only indicates the direction is downwards
<h3>c) Range
</h3>
Substituting (7) in (2):
(11)
(12)