To prevent the crate from slipping, the maximum force that the belt can exert on the crate must be equal to the static friction force.
Ff = 0.5 * 16 * 9.8 = 78.4 N
a = 4.9 m/s^2
If acceleration of the belt exceeds the value determined in the previous question, what is the acceleration of the crate?
In this situation, the kinetic friction force is causing the crate to decelerate. So the net force on the crate is 78.4 N minus the kinetic friction force.
Ff = 0.28 * 16 * 9.8 = 43.904 N
Net force = 78.4 – 43.904 = 34.496 N
To determine the acceleration, divide by the mass of the crate.
a = 34.496 ÷ 16 = 2.156 m/s^2
The answer is m/s hope it helps
Refer to the figure shown below, which is based on the given figure.
d = the horizontal distance that the projectile travels.
h = the vertical distance that the projectile travels.
Part A
From the geometry, obtain
d = X cos(α) (1a)
h = X sin(α) (1b)
The vertical and horizontal components of the launch velocity are respectively
v = v₀ sin(θ - α) (2a)
u = v₀ cos(θ - α) (2b)
If the time of flight is t, then
vt - 0.5gt² = -h
or
0.5gt² - vt - h = 0 (3a)
ut = d (3b)
Substitute (1a), (1b), (2a), (2b) (3b) into (3a) to obtain

![4.9[ \frac{X cos \alpha }{v_{0} cos(\theta - \alpha } ]^{2} - v_{0} sin(\theta - \alpha ) [ \frac{X cos \alpha }{v_{0} cos(\theta - \alpha } ] - X sin \alpha = 0](https://tex.z-dn.net/?f=4.9%5B%20%5Cfrac%7BX%20cos%20%5Calpha%20%7D%7Bv_%7B0%7D%20cos%28%5Ctheta%20-%20%20%5Calpha%20%7D%20%20%5D%5E%7B2%7D%20-%20v_%7B0%7D%20sin%28%5Ctheta%20-%20%20%5Calpha%20%29%20%5B%20%5Cfrac%7BX%20cos%20%5Calpha%20%7D%7Bv_%7B0%7D%20cos%28%5Ctheta%20-%20%20%5Calpha%20%7D%20%5D%20-%20X%20sin%20%5Calpha%20%20%3D%200)
Hence obtain
![aX^{2}-bX=0 \\ where \\ a=4.9[ \frac{cos \alpha }{v_{0} cos(\theta - \alpha )}]^{2} \\ b = cos \alpha \, tan(\theta - \alpha ) + sin \alpha](https://tex.z-dn.net/?f=aX%5E%7B2%7D-bX%3D0%20%5C%5C%20where%20%5C%5C%20a%3D4.9%5B%20%5Cfrac%7Bcos%20%5Calpha%20%7D%7Bv_%7B0%7D%20cos%28%5Ctheta%20-%20%20%5Calpha%20%29%7D%5D%5E%7B2%7D%20%5C%5C%20%20b%20%3D%20cos%20%5Calpha%20%5C%2C%20%20tan%28%5Ctheta%20-%20%20%5Calpha%20%29%20%2B%20sin%20%5Calpha%20)
The non-triial solution for X is

Answer:
![X= \frac{sin \alpha + cos \alpha \, tan(\theta - \alpha )}{4.9 [ \frac{cos \alpha }{v_{0} \, cos(\theta - \alpha )} ]^{2}}](https://tex.z-dn.net/?f=X%3D%20%5Cfrac%7Bsin%20%5Calpha%20%20%2B%20cos%20%5Calpha%20%20%5C%2C%20tan%28%5Ctheta%20-%20%20%5Calpha%20%29%7D%7B4.9%20%5B%20%5Cfrac%7Bcos%20%5Calpha%20%7D%7Bv_%7B0%7D%20%5C%2C%20cos%28%5Ctheta%20-%20%20%5Calpha%20%29%7D%20%20%5D%5E%7B2%7D%7D%20)
Part B
v₀ = 20 m/s
θ = 53°
α = 36°
sinα + cosα tan(θ-α) = 0.8351
cosα/[v₀ cos(θ-α)] = 0.0423
X = 0.8351/(4.9*0.0423²) = 101.46 m
Answer: X = 101.5 m
Answer:
greater with the brick wall
Explanation:
the impulse does not depend whether its a haystack or a brick wall because impulse is the products mass and velocity.