Answer:
C. 32.7%
Explanation:
% composition = ( mass S / mass H2SO4 ) × 100 = 32.08/ 98.10 × 100 = 32.7 % pls mark brainliest
Answer:
At the closest point
Explanation:
We can simply answer this question by applying Kepler's 2nd law of planetary motion.
It states that:
"A line connecting the center of the Sun to any other object orbiting around it (e.g. a comet) sweeps out equal areas in equal time intervals"
In this problem, we have a comet orbiting around the Sun:
- Its closest distance from the Sun is 0.6 AU
- Its farthest distance from the Sun is 35 AU
In order for Kepler's 2nd law to be valid, the line connecting the center of the Sun to the comet must move slower when the comet is farther away (because the area swept out is proportional to the product of the distance and of the velocity:
, therefore if r is larger, then v (velocity) must be lower).
On the other hand, when the the comet is closer to the Sun the line must move faster (
, if r is smaller, v must be higher). Therefore, the comet's orbital velocity will be the largest at the closest distance to the Sun, 0.6 A.
Answer:
16,506 ft²
Explanation:
There are different ways you can divide the area using rectangles and circles. One way is to find the area of the entire width and length, then subtract the empty areas in the corners.
If we take the empty areas and put them together, we find their area is the area of a square minus the area of a circle.
A = (2r)² − πr²
A = 4r² − πr²
A = (4 − π) r²
So the area of the rink is:
A = WL − (4 − π) r²
A = (85)(200) − (4 − π) (24)²
A ≈ 16,506 ft²
Answer:
principle of contiguity
Explanation:
The Law of Contiguity states that after events occur together (in spatio-temporal proximity), the re-occurrence of just one of the event awakens the 'memory' of the others. It is employed in a great number of scientific theories of learning, memory, and knowledge.