Answer:
Mass of the planet = 1.48 × 10²⁵ Kg
Mass of the star = 5.09 × 10³⁰ kg
Explanation:
Given;
Diameter = 1.8 × 10⁷ m
Therefore,
Radius =
=
or
Radius of the planet = 0.9 × 10⁷ m
Rotation period = 22.3 hours
Radius of star = 2.2 × 10¹¹ m
Orbit period = 407 earth days = 407 × 24 × 60 × 60 seconds = 35164800 s
free-fall acceleration = 12.2 m/s²
Now,
we have the relation
g =
g is the free fall acceleration
G is the gravitational force constant
M is the mass of the planet
on substituting the respective values, we get
12.2 =
or
M = 1.48 × 10²⁵ Kg
From the Kepler's law we have
T² =
on substituting the respective values, we get
35164800² =
or
= 5.09 × 10³⁰ kg
I think the answer is Resistance. If the link i posted int he comment is right.
To find food to find each other and to find their way
X -> Y + 2Z
So there are 2 different particles. 1 mol of X produces
1 mol of Y and 2 moles of Z.
Kps = [Y] [Z]^2
We will call “s” (solubility) the molarity of X
So the molarity of Y+ is also “s” (same number)
And the molarity of Z is “2s” (twice as much)
Kps = s*(2s)^2 = s*4s^2=4s^3
If s is multiplied by 2:
Kps = 4*(2s)^3=4*2^3*s^3=4*8*s^3
So Kps is multiplied by 8.
The question is missing, however, I guess the problem is asking for the value of the force acting between the two balls.
The Coulomb force between the two balls is:

where

is the Coulomb's constant,

is the intensity of the two charges, and

is the distance between them.
Substituting these numbers into the equation, we get

The force is repulsive, because the charges have same sign and so they repel each other.