Answer:
A. The person weighs 56 pounds more on Mars than on the moon
Explanation:
q = mCΔT
The correct specific heat capacity of water is <em>4.187 kJ/(kg.K)</em>.
ΔT = q/mC = 87 kJ/[648.00 kg x 4.187 kJ/(kg.K)] = 87 kJ/(2713 kJ/K) = 0.032 K
Tf = Ti + ΔT = 298 K + 0.032 K = 298.032 K
Answer:
1) The value of Kc:
C. remains the same.
2) The value of Qc:
A. is greater than Kc.
3) The reaction must:
B. run in the reverse direction to restablish equilibrium.
4) The concentration of N2 will:
B. decrease.
Explanation:
Hello,
In this case, by means of the Le Chatelier's principle which is based on the shift a chemical reaction could have under some modifications, we have:
1) The value of Kc:
C. remains the same, since it just depend the reaction's thermodynamics as it is computed via:

2) The value of Qc:
A. is greater than Kc, since the reaction quotient is:
![Qc=\frac{[N_2][H_2]^3}{[NH_3]^2}](https://tex.z-dn.net/?f=Qc%3D%5Cfrac%7B%5BN_2%5D%5BH_2%5D%5E3%7D%7B%5BNH_3%5D%5E2%7D)
Thus, the lower the concentration of ammonia, the higher Qc, making Qc>Kc.
3) The reaction must:
B. run in the reverse direction to restablish equilibrium, since ammonia was withdrawn and should be regenerated to reach the equilibrium.
4) The concentration of N2 will:
B. decrease, since less reactant is forming the products.
Best regards.
Answer:
sp³
Explanation:
Number of hybrid orbitals = ( V + S - C + A ) / 2
Where
H is the number of hybrid orbitals
V is the valence electrons of the central atom = 5
S is the number of single valency atoms = 4
C is the number of cations = 1
A is the number of anions = 0
For PCl₄⁺
Applying the values, we get:
H = ( 5+4-1+0) / 2
= 4
<u>This corresponds to sp³ hybridization.</u>
Easy peasy! All we need to do is plug this formula into our calculator:
-log(M)
So, we'd plug in -log(.2), which is 0.7 :)