The density is calculated as mass per volume, so if we want to solve for mass, we would multiply density by volume.
For Part A: if we have a density of 0.69 g/mL, and a volume of 280 mL, multiplying these will give a mass of: (0.69 g/mL)(280 mL) = 193.2 g. Rounded to 2 significant figures, this is 190 g gasoline.
For Part B: if we have a density of 0.79 g/mL, and a volume of 190 mL, multiplying these will give a mass of: (0.79 g/mL)(190 mL) = 150.1 g. Rounded to 2 significant figures, this is equal to 150 g ethanol.
The rules of base pairing (or nucleotide pairing) are: A with T: the purine adenine (A) always pairs with the pyrimidine thymine (T) C with G: the pyrimidine cytosine (C) always pairs with the purine guanine (G)
The nucleotides in a base pair are complementary which means their shape allows them to bond together with hydrogen bonds. The A-T pair forms two hydrogen bonds. The C-G pair forms three. The hydrogen bonding between complementary bases holds the two strands of DNA together.
Answer:

Explanation:
Hello,
In this case, given the balanced reaction:

We can see a 2:4 mole ration between permanganate ion (118.9 g/mol) and manganese (IV) oxide (86.9 g/mol), that is why the resulting mas of this last one turns out:

Best regards.
Answer:
Ionic bonding occurs when atoms either gain or lose one or more valence electrons, resulting in the atom having either a negative or positive charge.
Through ionic bonding, an atom of each element will combine with the other to form a molecule, which is more stable since it now has a zero charge.
Explanation:
Answer:
B. two rounds of cell division