<span>In a nuclear power plant control rods are used to:
</span><span>b. slow down the reaction.</span>
Answer: amount = 2466.95L
Explanation:
given that the speed is = 1900./kmh i.e. 1hr/900km
distance = 1050km
the fuel burns at a rate of 74.4 L/min
therefore the amount of fuel that the jet consumes on a 1050.km becomes;
total fuel used = time × fuel burning rate
where time = distance / speed
∴ total fuel used (consumed) = time × fuel burning rate
total fuel consumed = (1050km × 1hr/1900km) × (60min/ 1hr × 74.4L/1min)
total fuel consumed = 2466.95L
Answer:
Al2(SO4)3
Explanation:
Looking at this carefully, we will discover that Al2(SO4)3 is composed of Al^3+ and SO4^2-.
The aluminum and sulphate ions are ionically bonded. However, the oxygen and sulphur in the sulphate ion are covalently bonded.
Hence, Al2(SO4)3 contains both ionic and covalent bond.
The temperature of a certain substance can be seen as the average speed of the atoms or molecules in that substance. In the liquid state of a substance the forces between the atoms or molecules are strong enough to keep them together, however with enough freedom to move, unlike in the solid state. If we would have a closer look at the surface of a liquid from sideways, we would see water molecules jumping out of the water and reentering it again. The lower the water temperature would be the lesser the amount of water molecules leaving the liquid phase would be. If water would be heated up and the temperature will reach 100 degrees C at normal atmospheric pressure, more water molecules would leave the water than reentering. Boiling has started. The temperature of the water remains at 100 degrees C, if the heating continues as the average speed of molecules will not increase, only the rate of molecules leaving the water will increase, until all the water in liquid state has been vapourized. The amount of heat needed to vapourize liquid water is called latent heat. Latent heat is a very important driving factor in the atmosphere and thus the weather.