You're looking for the number of moles of H2, and you have 6.0 mol Al and 13 mol HCL.
For the first part, you have to make your way from 6.0 mol of Al to mol of H2, right? For that to happen, you need to make a conversion factor that will cancel the mol Al, in such case use the 2 moles of Al from your equation to cancel them out. At the top of the equation, you can use the number of moles of H2 from the equation and find the moles that will be produced for the H2.
6.0mol Al x 3 mol H2/2 mol Al = 9 mol H2
For the second part, you have to make the same procedure, make a conversion factor that will cancel the mol of HCL and for that you need to use the 6 mol HCL from your equation, and at the numerator you can put the 3 mol of H2 from the equation so that you can find the number of moles of H2 that will be produced.
13 mol HCL x 3 mol H2/6 mol HCL = 6.5 mol H2
As it can be seen, HCL produces the less amount of H2 moles. Therefore, the reaction CANNOT produce more than 6.5 mol H2, in that case 6.5 mol will be the maximum number of moles that will be produced at the end because HCL does not have enough to produce more than 6.5 mol.
In that case HCL is the limiting reactant because it limits that will be produced, and so the answer is B!
Answer:
\left \{ {{y=206} \atop {x=82}}Pb \right.
Explanation:
isotopes are various forms of same elements with different atomic number but different mass number.
Radioactivity is the emission of rays or particles from an atom to produce a new nuclei. There are various forms of radioactive emissions which are
- Alpha particle emission \left \{ {{y=4} \atop {x=2}}He \right.
- Beta particle emission \left \{ {{y=0} \atop {x=-1}}e \right.
- gamma radiation \left \{ {{y=0} \atop {x=0}}γ \right.
in the problem the product formed after radiation was Pb-206. isotopes of lead include Pb-204, Pb-206, Pb-207, Pb-208. they all have atomic number 82. which means the radiation cannot be ∝ or β since both radiations will alter the atomic number of the parent nucleus.
Only gamma radiation with \left \{ {{y=0} \atop {x=0}}γ \right. will produce a Pb-206 of atomic number 82 and mass number 206 , since gamma ray have 0 mass and has 0 atomic number.equation is shown below
\left \{ {{y=206} \atop {x=82}}Pb\right ⇒ \left \{ {{y=206} \atop {x=82}}Pb\right + \left \{ {{y=0} \atop {x=0}}γ\right.
Thus the atomic symbol is \left \{ {{y=206} \atop {x=82}}Pb\right
A) Double replacement
Because the reactants switch when they become products
Answer:
- <u><em>g) Neither plant should increase by 1 cm in height.</em></u>
Explanation:
See the graph for this question on the figure attached.
The growing of the <em>plant A</em> is represented by the line that goes above the other. At start, that line has a slope that rises about 0.75 cm ( height increase) in 1 day. From the day 2 and forward the slope of the line decreases. The line reaches its highest point about at day 4 and seems to start decreasing. Thus, you should predict that on the day six it <em>most likely </em>does not increase in height.
The growing of the <em>plant B</em> is represented by the line drawn below the other. As for the plant B, the growing decreases with the number of days. Between the days 4 and 5 the line is almost flat, which means that <em>most likely</em> this plant will not grow on the day six or grow less than 0.5 cm.
Thus, for both plants you can say that <em>on day six, most likley, neither should increase by 1 cm in height (</em>option g).