<u>Answer:</u>
Consistent and dependent
<u>Step-by-step explanation:</u>
We are given the following equation:
1. 
2. 
3. 
For equation 1 and 3, if we take out the common factor (3 and 4 respectively) out of it then we are left with
which is the same as the equation number 2.
There is at least one set of the values for the unknowns that satisfies every equation in the system and since there is one solution for each of these equations, this system of equations is consistent and dependent.
The equation given in the question is
3(3x - 1) + 2(3 - x) = 0
9x - 3 + 6 - 3x = 0
6x + 3 = 0
6x = - 3
x = - (3/6)
= - (1/2)
So the value of x as has been determined above is -1/2. I hope the procedure is clear enough for you to understand.<span>You can
always use this method for solving problems that are similar in type without
requiring any help from outside. </span>
Answer:
The height of the ball after 3 secs of dropping is 16 feet.
Step-by-step explanation:
Given:
height from which the ball is dropped = 160 foot
Time = t seconds
Function h(t)=160-16t^2.
To Find:
High will the ball be after 3 seconds = ?
Solution:
Here the time ‘t’ is already given to us as 3 secs.
We also have the relationship between the height and time given to us in the question.
So, to find the height at which the ball will be 3 secs after dropping we have to insert 3 secs in palce of ‘t’ as follows:


h(3)=160-144
h(3)=16
Therefore, the height of the ball after 3 secs of dropping is 16 feet.
Answer:
(a)
and
are indeed mutually-exclusive.
(b)
, whereas
.
(c)
.
(d)
, whereas 
Step-by-step explanation:
<h3>(a)</h3>
means that it is impossible for events
and
to happen at the same time. Therefore, event
and
are mutually-exclusive.
<h3>(b)</h3>
By the definition of conditional probability:
.
Rearrange to obtain:
.
Similarly:
.
<h3>(c)</h3>
Note that:
.
In other words,
and
are collectively-exhaustive. Since
and
are collectively-exhaustive and mutually-exclusive at the same time:
.
<h3>(d)</h3>
By Bayes' Theorem:
.
Similarly:
.
You have to do length of the base x width of the base x height of pyramid