The major drawback of fossil fuels is that they warm the planet i.e. they cause global warming.
The reaction typically gives off heat and light as well. The general equation for a complete combustion reaction is:
Fuel + O2 → CO2 + H2O + ENERGY
<h3>
Disadvantages of Fossil fuels</h3>
The term "fossil fuels" refers to flammable organic geologic formations, including dead organic matter that has been buried hundreds of feet beneath sediment.
- Fossil fuel emissions include various oxides, such as carbon, nitrogen, and sulfate, which cause acid rain and harm the soil's fertility and water quality.
- Both coal and petroleum burning discharge a significant amount of pollutants into the atmosphere, contributing to pollution levels.
- Gases like carbon dioxide are released through the burning of fossil fuels, which aids in climate change.
To view similar questions on Fossil fuels, refer to:
brainly.com/question/14339391
#SPJ4
Answer:
4
Explanation:
Ionization energy can be defined as the energy required for an atom to lose its valence electron to form an ion. Hence, it deals with how easily an atom would lose its electron and form an ion. As the valence electrons are lossless bound to the outermost shell, they can easily be lost without much problem or better still they can be lost easily. Hence, the energy change here is small and thus we can conclude that the ionization energy here is low.
The electron affinity works quite differently from the ionization energy. It deals with the way in which a neutral atom attracts an electron to form an ion. For an electron with loose valence electrons, the sure fact is that it does not really need these electrons. Hence, there is no need for an high electron affinity on its part. Thus, we conclude that the electron affinity is also low
Answer:
dissolve
Explanation:
When it dissolves , no chemicals are formed and it is considered as a physical property.
Answer:
H₂SO₄ (aq) + 2LiOH (aq) ⇒ Li₂SO₄ (aq) + 2H₂O (l)
Explanation:
This is an acid-base reaction, so we know the products are going to a salt/ionic compound and water.
PH of acidic buffer = pKa + log [CH₃COONa - HCl] / [CH₃COOH + HCl]
pKa of CH₃COOH = 4.74
Concentration of acetic acid in buffer = 2.0 M
Concentration of sodium acetate = 1.0 M
Concentration of HCl must add = x
pH = 4.74 + log (1-x) / (2+x) = 4.11
x = concentration of HCl must be added = 0.43 M
number of moles of HCl = M * V = 0.43 * 1 = 0.43 mol
mass of HCl must be added = 0.43 * 36.5 = 15.7 g