K2SO4 MgSO4 Al2(SO4)3 Ge2(SO4)4
KNO3 Mg(NO3)2 Al(NO3)3 Ge(NO3)4
KCH3COO Mg(CH3COO)2 Al(CH3COO)3 Ge(CH3COO)4
Note: all of the numerical are subscript to each element or compound.
<span>The balloons volume as it
rises increases because at higher altitude external pressure is lower, so the
air molecules inside the balloons tends to expand more to attain mechanical
equilibrium, where the external pressure and internal pressure are equal. Unlike
when the balloon is on the ground, external pressure is great so the gas
molecule cannot push the walls of the balloon so it is like underinflated.</span>
This is an exercise in the general or combined gas law.
To start solving this exercise, we obtain the following data:
<h3>
Data:</h3>
- T₁ = 22.5 °C + 273 = 295.5 K
- P₁ = 1.95 atm
- V₁ = ¿?
- P₂ = 3.69 atm
- T₂ = 11.9 °C + 273 = 284.9 k
- V₂= 56.4 ml
We use the following formula:
P₁V₁T₂ = P₂V₂T₁ ⇒ General formula
Where
- P₁ = Initial pressure
- V₁ = Initial volume
- T₂ = Initial temperature
- P₂ = Final pressure
- V₂ = final volume
- T₁ = Initial temperature
We clear the formula for the initial volume:

We substitute our data into the formula to solve:



The helium-filled balloon has a volume of <u>110.697 ml.</u>
When two or more atoms chemically bond together, they form a molecule (O3). When atoms of at least two different elements come together to form chemical bonds, these molecules can be called compounds (NaCl). A pure substance consists of a single element or compound. For example, Iron is formed only of Iron (Fe) atoms; table salt is formed only by sodium chloride (NaCl) molecules.
The answer would be 2,850