Answer:
[Ca²⁺] = 1M
[NO₃⁻] = 2M
Explanation:
Calcium nitrate dissociates in water as follows:
Ca(NO₃)₂ ⇒ Ca²⁺ + 2NO₃⁻
The moles of Ca²⁺ can be found using the molar relationship between Ca(NO₃)₂ and Ca²⁺
(0.100mol Ca(NO₃)₂) (Ca²⁺ /Ca(NO₃)₂) = 0.100 mol Ca²⁺
The concentration of Ca²⁺ is then:
[Ca²⁺] = n/V = (0.100mol)/(100.0mL) x (1000ml)/(1L) = 1M
Similarly, moles of NO₃⁻ can be found using the molar relationship between Ca(NO₃)₂ and NO₃⁻:
(0.100mol Ca(NO₃)₂) (2NO₃⁻/Ca(NO₃)₂) = 0.200 mol NO₃⁻
The concentration of NO₃⁻ is then:
[NO₃⁻] = (0.200mol)/(100.0mL) x (1000ml)/(1L) = 2M
Answer:
Cada átomo aporta dos electrones al enlace, es decir, se comparten dos pares de electrones entre dos átomos. Un ejemplo es la molécula de Oxígeno (O2).
Explanation:
Metals are on the left side of the table and nonmetals are on the left with metalloids between them. And the noble gases are all in group 18 of the periodic table.
The weight in grams = 7.93 g
Given volume = 2.00
Given density = 0.242 g/
We need to find the Mass(weight) in grams.
To find the weight in grams we need to keep in mind that the volume and density must use the same volume unit for cancellation. So that the volume units will cancel out, leaving only the mass units.
The unit of given volume is
and unit of volume in density is
, so first we need to change the unit of volume from
to
so that the volume units will cancel out, leaving only the mass units.
1
= 16.39
(given conversion)

units get cancel out leaving the
unit.

Mass = Density X Volume.
Density = 0.242 g/
and Volume = 32.78 

Mass = 7.93 grams (g)