Answer:
The new height the ball will reach = (1/4) of the initial height it reached.
Explanation:
The energy stored in any spring material is given as (1/2)kx²
This energy is converted to potential energy, mgH, of the ball at its maximum height.
If the initial height reached is H
And the initial compression of the spring = x
So, mgH = (1/2)kx²
H = kx²/2mg
The new compression, x₁ = x/2
New energy of loaded spring = (1/2)kx₁²
And the new potential energy = mgH₁
mgH₁ = (1/2)kx₁²
But x₁ = x/2
mgH₁ = (1/2)k(x/2)² = kx²/8
H₁ = kx²/8mg = H/4 (provided all the other parameters stay constant)
Your answer would be A. You divide 96 by 16 to find the answer
Imagine you are in a swimming pool 30m deep. Assuming you know that water is denser than air, you would know that the 30m of water above you will carry more weight, and press down on your body. Say you were in a swimming pool 60m deep, you would be sandwiched between 30m of water pressing down on you, and the upthrust created by the 30m of water below you.
In a building 30m up, the pressure will be regulated, as you are in a building. The floor will be strong enough to support the weight of the body, and the body will not recoil into itself.
935,500 joules because when we use the KE formula KE=1/2mv^2;
KE=1/2(750)(50)^2
KE=375(2500)
KE=935,500 Joules
Hope it helps
Answer:
a ) 11.1 *10^3 m/s = 39.96 Km/h
b) T_{o2} =1.58*10^5 K
Explanation:
a)
= 11.1 km/s =11.1 *10^3 m/s = 39.96 Km/h
b)
M_O2 = 32.00 g/mol =32.0*10^{-3} kg/mol
gas constant R = 8.31 j/mol.K

So, 
multiply each side by M_{o2}, so we have

solving for temperature T_{o2}

In the question given,

T_{o2} =1.58*10^5 K