The experiments will involve two billiard balls of known masses, m₁ and m₂, and velocities u₁ and u₂. The two are allowed to collide and the velocities of the balls after the collision v₁ and v₂ are recorded.
The momentum before and after the collision is then calculated as follows:
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
<h3>What is the statement of the law of conservation of momentum?</h3>
The law of the conservation of momentum states that the momentum before and after collision in a system of colliding bodies is conserved
The momentum of a body is calculated using the formula below:
Momentum = mass * velocity.
Hence, for the two billiard balls, the momentum before and after the collision is conserved.
Learn more about momentum at: brainly.com/question/1042017
#SPJ1
Answer:
S= 1.40x10⁻⁵mol/L
Explanation:
The Henry's Law is given by the next expression:
(1)
<em>where S: is the solubility or concentration of Ar in water,
: is Henry's law constant and p: is the pressure of the Ar </em>
<u>Since the argon is 0.93%, we need to multiply the equation (1) by this percent:</u>
Therefore, the argon solubility in water is 1.40x10⁻⁵mol/L.
Have a nice day!
Answer:
A) Emin = eV
B) Vo = (E_light - Φ) ÷ e
Explanation:
A)
Energy of electron is the product of electron charge and the applied potential difference.
The energy of an electron in this electric field with potential difference V will be eV. Since this is the least energy that the electron must reach to break out, then the minimum energy required by this electron will be;
Emin = eV
B)
The maximum stopping potential energy is eVo,
The energy of the electron due to the light is E_light.
If the minimum energy electron must posses is Φ, then the minimum energy electron must have to reach the detectors will be equal to the energy of the light minus the maximum stopping potential energy
Φ = E_light - eVo
Therefore,
eVo = E_light - Φ
Vo = (E_light - Φ) ÷ e
The answer is magnet away from the coil