Answer:
2OH^-(aq) + Cu^2+(aq) -----> Cu(OH)2(s)
Explanation:
The net ionic equation usually shows the main ionic reaction that goes in the system. The other ions that do not participate in this net ionic equation are called spectator ions. Spectator ions do not participate in the main reaction occurring in the system.
The net ionic equation quite often result in the formation of a solid precipitate in the system such as Cu(OH)2.
The net ionic equation for this reaction is;
2OH^-(aq) + Cu^2+(aq) -----> Cu(OH)2(s)
Answer:
watching a firefly is much different than watching a fire because watching a fire can make you hot and watching a firefly can make you happy
Standardized means that a specific amount EDTA is added to a specific volume of distilled water. Water hardness is determined by the the amount of a standard EDTA solution to change the color of the water from red to blue. For example if one added the correct amount of EDTA to twice the volume of distilled water the solution would be weak. Titration of the hard water would give a erroneous high result.
<u>Answer:</u> The reaction proceeds in the forward direction
<u>Explanation:</u>
For the given chemical equation:

Relation of
is given by the formula:

where,
= equilibrium constant in terms of partial pressure = ?
= equilibrium constant in terms of concentration = 
R = Gas constant = 
T = temperature = ![35^oC=[35+273]K=308K](https://tex.z-dn.net/?f=35%5EoC%3D%5B35%2B273%5DK%3D308K)
= change in number of moles of gas particles = 
Putting values in above equation, we get:

is the constant of a certain reaction at equilibrium while
is the quotient of activities of products and reactants at any stage other than equilibrium of a reaction.
The expression of
for above equation follows:

We are given:



Putting values in above equation, we get:

We are given:

There are 3 conditions:
- When
; the reaction is product favored. - When
; the reaction is reactant favored. - When
; the reaction is in equilibrium
As,
, the reaction will be favoring product side.
Hence, the reaction proceeds in the forward direction
Answer:
2.7 × 10⁻⁴ bar
Explanation:
Let's consider the following reaction at equilibrium.
SbCl₅(g) ⇄ SbCl₃(g) + Cl₂(g)
The pressure equilibrium constant (Kp) is 3.5 × 10⁻⁴. We can use these data and the partial pressures at equilibrium of SbCl₅ and SbCl₃, to find the partial pressure at equilibrium of Cl₂.
Kp = pSbCl₃ × pCl₂ / pSbCl₅
pCl₂ = Kp × pSbCl₅ / pSbCl₃
pCl₂ = 3.5 × 10⁻⁴ × 0.17 / 0.22
pCl₂ = 2.7 × 10⁻⁴ bar