





Answer:
Explanation:
From the correct question above:
The reaction can be represented as:

From the above reaction; the ICE table can be represented as:

I (mol/L) 0.086 0.28 0 0
C -4x -3x +2x +6x
E 0.086 - 4x 0.28 - 3x +2x +6x
At equilibrium;
The water vapor = 


![\text{equilibrium constant} ({k_c}) = \dfrac{ [N_2]^2 [H_2O]^6 }{ [[NH_3]^4] [O_2]^3 }](https://tex.z-dn.net/?f=%5Ctext%7Bequilibrium%20constant%7D%20%20%28%7Bk_c%7D%29%20%3D%20%20%5Cdfrac%7B%20%5BN_2%5D%5E2%20%5BH_2O%5D%5E6%20%7D%7B%20%5B%5BNH_3%5D%5E4%5D%20%5BO_2%5D%5E3%20%7D)

Replacing the value of x, we have:


Answer: obey the "law of conservation of mass".
_____________________________________
Answer:
the molar mass of any element can be determined by finding the atomic mass of the element on the periodic table for example, if the atomic mass of sulfer is 32.066 amu, then it's molar mass is 32.066 g / mol