Raising of the boiling point is a colligative property. That means that it depends on the number of particles dissolved. The greater the number of particles the greater the increase in the boiling point. So, you can compare the effect of these solutes in the increase of the boiling point by writing the chemical equations and comparing the number of particles dissolved: 1)ionic lithium chloride, LiCl(s) --> Li(+) + Cl (-) => 2 ions; 2) ionic sodium chloride, NaCl(s) --> Na(+) + Cl(-) => 2 ions; 3) molecular sucrose, C12H22O11 (s) ---> C12H22O11(aq) => 1 molecule; 4) ionic phosphate, Na3PO4 --> 3Na(+) + PO4 (3-) => 4 ions; 5) ionic magnesium bromide, MgBr2 --> Mg(2+) + 2 Br(-) => 3 ions. <span>So, ionic phosphate produces the greatest number of particles and it will cause the greatest increase of the boiling point.</span><span />
Answer:
There is more space between gas particles than the size of the particles.
Explanation:
This scenario can be understand by taking a very simple example. As we know that 1 mole of any gas at standard temperature and pressure occupy 22.4 liters of volume. Lets take Hydrogen gas and Oxygen gas, 1 mole of each gas will occupy same volume. Why it is so? Why same volume although Oxygen is 16 times more heavier? This is because the space between gas molecules is very large. Approximately the distance between gas molecules is 300 times greater than their own diameter from its neighbor molecules.
you calculate all the letters together and it would be Zn2
Answer:

Explanation:
Hello there!
In this case, since the vaporization process is carried out in order to turn a liquid into a gas due to the addition of heat, we can use the following heat equation involving the heat of vaporization of water or any other substance:

Thus, since this heat of vaporization for water is 2259.36 J/g, we plug in this amount to obtain the total energy for this process.

Which is positive due to the necessity of heat.
Regards!