Answer:
Three possible blood type alleles are Iᴬ, Iᴮ and i
Explanation:
Iᴬ, Iᴮ and i are three possible blood type alleles.
Iᴬ and Iᴮ are known as co-dominant, and The i allele is recessive.
Thus, Three possible blood type alleles are Iᴬ, Iᴮ and i
<u>-TheUnknownScientist</u>
<u>Answer:</u> C) be hypertonic to Tank B.
<u>Explanation: </u>
<u>
The ability of an extracellular solution to move water in or out of a cell by osmosis</u> is known as its tonicity. Additionally, the tonicity of a solution is related to its osmolarity, which is the <u>total concentration of all the solutes in the solution.
</u>
Three terms (hypothonic, isotonic and hypertonic) are used <u>to compare the osmolarity of a solution with respect to the osmolarity of the liquid that is found after the membrane</u>. When we use these terms, we only take into account solutes that can not cross the membrane, which in this case are minerals.
- If the liquid in tank A has a lower osmolarity (<u>lower concentration of solute</u>) than the liquid in tank B, the liquid in tank A would be hypotonic with respect to the latter.
- If the liquid in tank A has a greater osmolarity (<u>higher concentration of solute</u>) than the liquid in tank B, the liquid in tank A would be hypertonic with respect to the latter.
- If the liquid in tank A has the same osmolarity (<u>equal concentration of solute</u>) as the liquid in tank B, the liquid in tank A would be isotonic with respect to the latter.
In the case of the problem, option A is impossible because the minerals can not cross the membrane, since it is permeable to water only. There is no way that the concentration of minerals decreases in tank A, so <u>the solution in this tank can not be hypotonic with respect to the one in Tank B. </u>
Equally, both solutions can not be isotonic and neither we can say that the solution in tank A has more minerals that the one in tank B because the liquid present in tank B is purified water that should not have minerals. Therefore, <u>options B and D are also not correct.</u>
Finally, the correct option is C, since in the purification procedure the water is extracted from the solution in tank A to obtain a greater quantity of purified water in tank B. In this way, the solution in Tank A would be hypertonic to Tank B.
<span>6.38x10^-2 moles
First, let's determine how many moles of gas particles are in the two-liter container. The molar volume for 1 mole at 25C and 1 atmosphere is 24.465 liters/mole. So
2 L / 24.465 L/mol = 0.081749438 mol
Now air doesn't just consist of nitrogen. It also has oxygen, carbon dioxide, argon, water vapor, etc. and the total number of moles includes all of those other gasses. So let's multiply by the percentage of nitrogen in the atmosphere which is 78%
0.081749438 mol * 0.78 = 0.063764562 mol.
Rounding to 3 significant figures gives 6.38x10^-2 moles</span>