Answer:
Option (d)
Explanation:
The electrons in a conductor moves with the drift velocity when the electric current is flowing through the conductor.
The drift velocity is due to the applied electric field across the conductor.
The sentence can be completed as follows:
The wavelength of an electromagnetic waves is the spatial distance between two successive troughs.
Note that the wavelength of a wave can also measured as the spatial distance between two successive crests of the wave. Also note that the second part of the sentence ("also known as the period") is not true, because period is another thing (in fact, the period is the time interval between two successive troughs).
Given Information:
Length of wire = 132 cm = 1.32 m
Magnetic field = B = 1 T
Current = 2.2 A
Required Information:
(a) Torque = τ = ?
(b) Number of turns = N = ?
Answer:
(a) Torque = 0.305 N.m
(b) Number of turns = 1
Explanation:
(a) The current carrying circular loop of wire will experience a torque given by
τ = NIABsin(θ) eq. 1
Where N is the number of turns, I is the current in circular loop, A is the area of circular loop, B is the magnetic field and θ is angle between B and circular loop.
We know that area of circular loop is given by
A = πr²
where radius can be written as
r = L/2πN
So the area becomes
A = π(L/2πN)²
A = πL²/4π²N²
A = L²/4πN²
Substitute A into eq. 1
τ = NI(L²/4πN²)Bsin(θ)
τ = IL²Bsin(θ)/4πN
The maximum toque occurs when θ is 90°
τ = IL²Bsin(90)/4πN
τ = IL²B/4πN
torque will be maximum for N = 1
τ = (2.2*1.32²*1)/4π*1
τ = 0.305 N.m
(b) The required number of turns for maximum torque is
N = IL²B/4πτ
N = 2.2*1.32²*1)/4π*0.305
N = 1 turn
The human body is connected in every way. All the organs are connected and help each other be alive. For example, the veins are connected to the heart, which help it by pumping blood and oxygen. If they weren’t there, the heart wouldn’t be able to sustain a life.
I really hope this gave you and ideas and helped you in some way:)
Answer:
55.96kJ
Explanation:
Energy = mass of diethyl ether × enthalpy of vaporization of diethyl ether
Volume (v) = 200mL, density (d) = 0.7138g/mL
Mass = d × v = 0.7138 × 200 = 142.76g
Enthalpy of vaporization of diethyl ether = 29kJ/mol
MW of diethyl ether (C2H5)2O = 74g/mol
Enthalpy in kJ/g = 29kJ/mol ÷ 74g/mol = 0.392kJ/g
Energy = 142.76g × 0.392kJ/g = 55.96kJ