It would be Constructive interference. It occurs when two waves collide and make a taller wave.
The mechanical advantage of the screwdriver that is being described above is equal to 75N. This means that for every 30N that is applied on the screwdriver, this simple machine would in turn apply 75N of force to the lid of the can.
Answer:
a = 1.764m/s^2
Explanation:
By Newton's second law, the net force is F = ma.
The equation for friction is F(k) = F(n) * μ.
In this case, the normal force is simply F(n) = mg due to no other external forces being specified
F(n) = mg = 15kg * 9.8 m/s^2 = 147N.
F(k) = F(n) * μ = 147N * 0.18 = 26.46N.
Assuming the object is on a horizontal surface, the force due to gravity and the normal force will cancel each other out, leaving our net force as only the frictional one.
Thus, F(net) = F(k) = ma
26.46N = 15kg * a
a = 1.764m/s^2
Answer:
The heating element of the heater is made up of alloy which has very high resistance so when current flows through the heating element, it becomes too hot and glows red. But the resistance of cord which is usually of copper or aluminum is very low so it does not glow.
Answer:
354200J
Explanation:
Given parameters:
Mass of copper bushing = 8kg
Initial temperature = 25°C
Final temperature = 140°C
Unknown:
Quantity of heat required to heat this mass = ?
Solution:
The amount of heat required to heat mass from one temperature to another is given by;
H = m c Δt
where m is the mass
c is the specific heat
Δt is the change in temperature
C is a constant and for copper, its value is 385J/kg°C
Input the parameters;
H = 8 x 385 x (140 - 25) = 354200J