Kepler's first law - sometimes referred to as the law of ellipses - explains that planets are orbiting the sun in a path described as an ellipse. An ellipse can easily be constructed using a pencil, two tacks, a string, a sheet of paper and a piece of cardboard. Tack the sheet of paper to the cardboard using the two tacks. Then tie the string into a loop and wrap the loop around the two tacks. Take your pencil and pull the string until the pencil and two tacks make a triangle (see diagram at the right). Then begin to trace out a path with the pencil, keeping the string wrapped tightly around the tacks. The resulting shape will be an ellipse. An ellipse is a special curve in which the sum of the distances from every point on the curve to two other points is a constant. The two other points (represented here by the tack locations) are known as the foci of the ellipse. The closer together that these points are, the more closely that the ellipse resembles the shape of a circle. In fact, a circle is the special case of an ellipse in which the two foci are at the same location. Kepler's first law is rather simple - all planets orbit the sun in a path that resembles an ellipse, with the sun being located at one of the foci of that ellipse.
Answer:
A) The net force
Explanation:
If two forces of equal strength act on an object in opposite directions, the forces will cancel, resulting in a net force of zero and no movement.
Ok, so you've got to figure out a force F and you have the speed in which the boxer punches on determinate time and the mass of the sheet of paper.
So based on the formula that says that the Force is equal to the mass multiplied by the acceleration => F=ma.
You look at it and see that you only have mass which is measured on KG so there is no problem.
then you have the acceleration which is measured on meters and is defined by: a = Δv/Δt
So now you can replace the velocity and the time you have there
⇒ a 25m/s / 0.05s
you have computing that ⇒ 50m because the seconds were cancelled out.
and then you plug the meters into the force equation.
F=(0.005kg)(50)
F=0.25N
so the boxer will have a force of 0.25 Newton's.
Answer:
Since you haven't provided any choices, then the answer is "Free Fall Motion."
Explanation:
In order to learn more about the answer, let's discuss what free fall motion is.
Free Fall- In Physics, this refers to any body motion that is acted upon solely by <u>"gravity."</u> The acceleration in free fall is always downward and there's the absence of other forces. Take note that the<em> acceleration should be the same and is independent of the object's mass. </em>This acceleration is called "acceleration due to gravity."
Gravity- This refers to the force that pulls any object towards the center of the earth.
<u>Examples of Objects in Free Fall Motion</u>
1. A ball dropped at the top of a building.
2. Dropping a coin from a table.
The ball and the coin are both in free fall motion because they are being pulled by gravity towards the earth. Their acceleration is also constant and there are no other forces acting upon them.
Answer:
hope helps
Explanation:
In a weightless environment a force of 5 Newtons is applied horizontally to the right on a rock with a mass of 1 kg and to a pebble with a mass of 0.1 kg.