-- Take a straight ruler.
-- Lay it down with the 'zero' mark at the start point.
-- Rotate it around the start point until the end point is also touching the edge of the ruler.
-- From the marks on the ruler, read the straight-line distance from the start point to the end point.
-- Without moving the ruler, observe and write down the DIRECTION from the start point to the end point.
-- The Displacement is the straight-line distance and direction from the start point to the end point.
Answer:
Explanation:
Let the critical angle be C .
sinC = 1 / μ where μ is index of refraction .
sinC = 1 /1.2
= .833
C = 56°
Then angle of refraction r = 90 - 56 = 34 ( see the image in attached file )
sin i / sinr = 1.2 , i is angle of incidence
sini = 1.2 x sinr = 1.2 x sin 34 = .67
i = 42°.
Answer:
Time taken by A and B is 1.2 hr.
Explanation:
Given that
Time taken by tank when all(A+B+C) are open = 1 hr
Time taken by tank when A+C are open = 1.5 hr
Time taken by tank when B+C are open = 2 hr
If we treat as filling of tank is a work then
Work = time x rate
Lets take work is 1 unit
1 = 1(1/a+1/b+1/c) ---------1
1 = 1.5(1/a+1/c) ----------2
1 = 2(1/b+1/c) --------3
From equation 1 and 3
1=1(1/a+1/2)
a=2
Form equation 2
1 = 1.5(1/2+1/c)
c=6
From equation 3
1 = 2(1/b+1/6)
b=3
So time taken by
A is alone to fill tank is 2 hr
B is alone to fill tank is 3 hr
C is alone to fill tank is 6 hr
So 
Time taken by A and B is 1.2 hr.
As streams flow through Stone Mountain, layers of sand build up. Over time, the sand particles form a sedimentary rock called sandstone. What causes sandstone to change into metamorphic rock at Stone Mountain? Sandstone experiences intense heat and pressure.
(Correct Answer is above)
Also Mark Brainliest please.
Answer:
Load
Explanation:
A normal power supply can deliver up to certain amount of power to a load. The output power can be calculated multiplying Voltage (V) x Current (A). It happens that after a certain period of time, the power source's main components begin to wear, thus losing its ability to deliver its nominal power. Normally, when no load its connected to the source, you will get the operating Voltage, but when the load demands power, the ability to deliver power to it may fail to reach nominal levels. When connected, there may be voltage drops (thus, less power output) causing malfunctions turning it into a non-operative power supply.