Force = mass*acceleration so
3.6*2.5 =9 Newtons
<span>In order for
an object to accelerate, a <u>force</u> must be applied. It follows Newton’s second
law of motion where it states that a body at rest remains at rest unless a
force is acted upon it. When you move an object, you are exerting a force onto
it. By exerting a force on the object, you are actually displacing it from its
initial position. You cannot apply force to the object without altering its
position. Keep in mind that when you exert work, you are exerting energy too. </span>
Answer: position (x) and time (t)
Explanation:
A body is said to be in motion when its position changes with time with respect to a stationary observer.
Following are the types of motion:
<u>Uniform motion</u>: When equal amount of distance is covered in equal intervals of time.
<u>Non-Uniform motion</u>: When unequal amount of distance is covered in equal intervals of time.
Motion can be of the following types as well:
<u>Rectilinear motion</u>: when object moves in a straight line.
<u>Circular motion</u>: when object moves in a curved path.
<u>Periodic motion</u>: when motion repeats itself in fixed intervals of time.
Thus, in order to define motion, only two variables are required: position and time. Measuring these variables can determine whether the object is in motion or not and the type of motion.
If it is the video I am thinking of then Yes
Answer:
22.74 m/s
Explanation:
u= 5.0
a= 2.4
t= 7.39
Therefore the final velocity can be calculated as follows
v = u + at
v= 5 + 2.4(7.39)
v= 5 + 17.736
v= 22.74 m/s
Hence the final velocity of the object is 22.74 m/s