Answer:
<u>II. Second table</u>
A B Total
C 0.25 0.75 1.00
D 0.35 0.65 1.00
Total 0.30 0.70 1.00
Explanation:
<h2>Tables</h2>
<u>I. First table </u>
A B Total
C 0.25 0.25 0.50
D 0.25 0.25 0.50
Total 0.50 0.25 1.00
<u>II. Second table</u>
A B Total
C 0.25 0.75 1.00
D 0.35 0.65 1.00
Total 0.30 0.70 1.00
<u>III. Third table</u>
<u></u>
A B Total
C 0.75 0.25 0.50
D 0.25 0.75 0.50
Total 0.50 0.50 1.00
<u>IV. Fourth table</u>
A B Total
C 0.65 0.35 1.00
D 0.35 0.65 1.00
Total 1.00 1.00 1.00
<h2>Solution</h2>
A <em>conditional relative frequency table</em> shows the relative frequencies determined upon a row or column.
There are two types of relative conditional frequency table: 1) row conditional relative frequency, and 2) column conditional relative frequency.
When you divide the joint frequency by the marginal frequency of the column total you have the row conditional frequency table. When you dividethe joint frequency by the row total you have the colum conditional frequency table.
In a row conditional relative frequency each total of the right hand column equals 1. This is the case of the second table.
In a column conditional relative frequency each total of the bottom row equals 1. This is not happening with any of the shown tables.
Hence, only the second table could be a conditional relative frequency table.
Answer:
the factor of 12 is 1 2 3 4 6 12 so that
-3(n+4)
Ralph's height is y
Ben's height is x
Ben's height is 1/20 of Ralph's height. How tall is Ralph?
Answer:
Dude, where's the picture?
I believe this is a function. I am not sure because one of the pairs only has a y value.
But the rule is there can only be one x value for one y value so for example, you can have (3.7) and (3,9) and the same for the y values.