Uhhh, that looks like a game. I don't know how to tell u the answers for that thing -_-
I hope this helps it’s not the exact answer but it can help you
Answer:
0.6743 M
Explanation:
HC₂H₃O₂ + NaOH → NaC₂H₃O₂ + H₂O
First we <u>calculate how many NaOH moles reacted</u>, using the <em>definition of molarity</em>:
- Molarity = moles / volume
- moles = Molarity * volume
- 0.4293 M * 39.27 mL = 16.86 mmol NaOH
<em>One NaOH moles reacts with one acetic acid mole</em>, so <u>the vinegar sample contains 16.86 mmoles of acetic acid as well</u>.
Finally we <u>calculate the concentration (molarity) of acetic acid</u>:
- 16.86 mmol HC₂H₃O₂ / 25.00 mL = 0.6743 M
16.4 grams is the mass of solute in a 500 mL solution of 0.200 M
.
sodium phosphate
Explanation:
Given data about sodium phosphate
atomic mass of Na3PO4 = 164 grams/mole
volume of the solution = 500 ml or 0.5 litres
molarity of sodium phosphate solution = 0.200 M
The formula for molarity will be used here to know the mass dissolved in the given volume of the solution:
The formula is
molarity = 
putting the values in the equation, we get
molarity x volume = number of moles
0.200 X 0.5= number of moles
number of moles = 0.1 moles
Atomic mass x number of moles = mass
putting the values in the above equation
164 x 0.1 = 16.4 grams
16.4 grams of sodium phosphate is present in 0.5 L of the solution to make a 0.2 M solution.
H+O>h2o I believe this is the answer