Answer:
P =18760.5 Pa
Explanation:
Given that
Volume ,V= 0.0434 m³
Mass ,m= 4.19 g = 0.00419 kg
T= 417 K
If we assume that water vapor is behaving like a ideal gas ,then we can use ideal gas equation
Ideal gas equation P V = m R T
p=Pressure ,V = Volume ,m =mass
T=Temperature ,R=Universal gas constant
Now by putting the values
P V = m R T
For water R= 0.466 KJ/kgK
P x 0.0434 = 0.00419 x 0.466 x 417
P =18.7605 KPa
P =18760.5 Pa
Therefore the answer is 18760.5 Pa
A window is the most transparent object from these, so that is the answer.
Answer:
a

b

Explanation:
From the question we are told that
Their distance apart is 
The wavelength of each source wave 
Let the distance from source A where the construct interference occurred be z
Generally the path difference for constructive interference is

Now given that we are considering just the straight line (i.e points along the line connecting the two sources ) then the order of the maxima m = 0
so

=> 
=> 
Generally the path difference for destructive interference is

=> 
=> 
substituting values

=> 
So


and

=> 
=> 
Answer: c. the molecules with the highest energy evaporate first, lowering the temperature of the sample
Explanation:
The process by which liquid starts to change into vapor phase at any temperature is known as evaporation.
During evaporation , the molecules which possess higher energies escape from the upper layer into vapor phase. the molecules which escape draw energy from surroundings and thus decrease the energy of the surroundings and hence lead to decrease in temperature.
As temperature of the system is directly proportional to the energy of the system , thus decrease in energy leads to decrease in temperature.

K.E. = Kinetic energy
T = temperature
R= gas constant