Complete Question
A 100-W (watt) light bulb has resistance R=143Ω (ohms) when attached to household current, where voltage varies as V=V0sin(2πft), where V0=110 V, f=60 Hz. The power supplied to the bulb is P=V2R J/s (joules per second) and the total energy expended over a time period [0,T] (in seconds) is 
Compute U if the bulb remains on for 5h
Answer:
The value is 
Explanation:
From the question we are told that
The power rating of the bulb is
The resistance is 
The voltage is ![V = V_o sin [2 \pi ft]](https://tex.z-dn.net/?f=V%20%20%3D%20%20V_o%20%20sin%20%5B2%20%5Cpi%20ft%5D)
The energy expanded is 
The voltage 
The frequency is 
The time considered is 
Generally power is mathematically represented as

=> ![P = \frac{( 110 sin [2 \pi * 60t])^2}{ 144}](https://tex.z-dn.net/?f=P%20%3D%20%20%5Cfrac%7B%28%20110%20%20sin%20%5B2%20%5Cpi%20%2A%2060t%5D%29%5E2%7D%7B%20144%7D)
=> ![P = \frac{ 110^2 [ sin [120 \pi t])^2}{ 144}](https://tex.z-dn.net/?f=P%20%3D%20%20%5Cfrac%7B%20110%5E2%20%5B%20sin%20%5B120%20%5Cpi%20t%5D%29%5E2%7D%7B%20144%7D)
So
![U = \int\limits^T_0 { \frac{ 110^2* [sin [120 \pi t])^2}{ 144}} \, dt](https://tex.z-dn.net/?f=U%20%20%3D%20%20%5Cint%5Climits%5ET_0%20%7B%20%5Cfrac%7B%20110%5E2%2A%20%20%5Bsin%20%5B120%20%5Cpi%20t%5D%29%5E2%7D%7B%20144%7D%7D%20%5C%2C%20dt)
=> ![U = \frac{110^2}{144} \int\limits^T_0 { ( sin^2 [120 \pi t]} \, dt](https://tex.z-dn.net/?f=U%20%20%3D%20%20%5Cfrac%7B110%5E2%7D%7B144%7D%20%5Cint%5Climits%5ET_0%20%7B%20%28%20%20%20sin%5E2%20%5B120%20%5Cpi%20t%5D%7D%20%5C%2C%20dt)
=> 
=> 
=> ![U = \frac{110^2}{144} [\frac{t}{2} - [\frac{1}{2} * \frac{sin(240 \pi t)}{240 \pi} ] ]\left | T} \atop {0}} \right.](https://tex.z-dn.net/?f=U%20%3D%20%20%5Cfrac%7B110%5E2%7D%7B144%7D%20%5B%5Cfrac%7Bt%7D%7B2%7D%20%20-%20%5B%5Cfrac%7B1%7D%7B2%7D%20%2A%20%20%5Cfrac%7Bsin%28240%20%5Cpi%20t%29%7D%7B240%20%5Cpi%7D%20%5D%20%5D%5Cleft%20%20%7C%20T%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
=> ![U = \frac{110^2}{144} [\frac{t}{2} - [\frac{1}{2} * \frac{sin(240 \pi t)}{240 \pi} ] ]\left | 18000} \atop {0}} \right.](https://tex.z-dn.net/?f=U%20%3D%20%20%5Cfrac%7B110%5E2%7D%7B144%7D%20%5B%5Cfrac%7Bt%7D%7B2%7D%20%20-%20%5B%5Cfrac%7B1%7D%7B2%7D%20%2A%20%20%5Cfrac%7Bsin%28240%20%5Cpi%20t%29%7D%7B240%20%5Cpi%7D%20%5D%20%5D%5Cleft%20%20%7C%2018000%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
![U = \frac{110^2}{144} [\frac{18000}{2} - [\frac{1}{2} * \frac{sin(240 \pi (18000))}{240 \pi} ] ]](https://tex.z-dn.net/?f=U%20%3D%20%20%5Cfrac%7B110%5E2%7D%7B144%7D%20%5B%5Cfrac%7B18000%7D%7B2%7D%20%20-%20%5B%5Cfrac%7B1%7D%7B2%7D%20%2A%20%20%5Cfrac%7Bsin%28240%20%5Cpi%20%2818000%29%29%7D%7B240%20%5Cpi%7D%20%5D%20%5D)
=> 
Pushing, pulling is the answer
<em>Convert 1nanosecond in to its SI init</em>
<em>In SI units, nano is 1000th part of micro which in turn is 1000th part of mini which in turn is 1000th part of main unit. Now, when you affix nano to any unit, here in case, second, it means that you are referring to 1000th part of 1000th part of 1000th part of second or in short, 1000000000th(10^9) part of a second.</em>
<em>In SI units, nano is 1000th part of micro which in turn is 1000th part of mini which in turn is 1000th part of main unit. Now, when you affix nano to any unit, here in case, second, it means that you are referring to 1000th part of 1000th part of 1000th part of second or in short, 1000000000th(10^9) part of a second.So to convert nanosecond into second, just multiply the nanosecond with 0.000000001 or (10^-9)</em>