Answer:
F = 2π I R B
Explanation:
The magnetic force is described by the equation.
F = q v x B = i L x B
Where i is the current, L is a vector that points in the direction of the current (length) and B is the magnetic field.
This equation can be used in scalar form and the direction of the force found by the right hand ruler, the thumb goes in the direction of L, the fingers extended in the direction of B and the palm of the hand indicates the direction of the force if the load is positive
F = i L B sin θ
In this case the wire is in the xy plane and the z-axis field whereby they are perpendicular, θ = 90º and sin 90 = 1
F = i L B
The loop length is
L = 2π R
F = i 2π R B
F = 2π I R B
The force is in the loop
The net force is 270 N
Explanation:
We can solve this problem by using Newton's second law, which states that the net force on an object is equal to the product between its mass and its acceleration:

where
F is the force
m is the mass
a is the acceleration
In this problem, we have
m = 90.0 kg

Substituting, we find the net force on the object:

Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly
Answer:
471392.4 N
Explanation:
From the question,
Just before contact with the beam,
mgh = Fd.................... Equation 1
Where m = mass of the beam, g = acceleration due to gravity, h = height. F = average Force on the beam, d = distance.
make f the subject of the equation
F = mgh/d................ Equation 2
Given: m = 1900 kg, h = 4 m, d = 15.8 = 0.158 m
Constant: g = 9.8 m/s²
Substitute into equation 2
F = 1900(4)(9.8)/0.158
F = 471392.4 N
Answer:
April 24, 1990 is the answer