Answer:
For this type of question you might want to give a domain in a set statement
ie.24 is less than 2(13,14,15,...)
<em><u>Or</u></em>
<em>If</em><em> </em><em>my</em><em> </em><em>fi</em><em>rst</em><em> </em><em>answer</em><em> </em><em>was</em><em> </em><em>a</em><em> </em><em>deviation</em><em> </em><em>then</em><em> </em><em> you</em><em> </em><em>were</em><em> </em><em>proba</em><em>bly</em><em> </em><em>being</em><em> </em><em>ask</em><em>ed</em><em> to</em><em> </em><em>subt</em><em>ract</em><em> </em><em>2</em><em>4</em><em> </em><em>fro</em><em>m</em><em> </em><em>2</em><em>t</em><em>i</em><em>m</em><em>e</em><em>s</em><em> </em><em>a</em><em> </em><em>giv</em><em>en</em><em> </em><em>num</em><em>ber</em><em> </em><em>being</em><em> </em><em>repres</em><em>e</em><em>nted</em><em> </em><em> </em><em>by</em><em> </em><em>the</em><em> </em><em>varia</em><em>ble</em><em> </em><em>x</em>
<span>Let the width of the rectangular plot of land be 'x' yards.
Given that the length of the rectangular plot of land is 10 yards more than its width.
So, width of the rectangular plot of land = (x + 10) yards.
Also given that the area of the rectangular plot of land is 600 square yards.
We know that, area of a rectangle = length * width
That is, (x+10) * x = 600
x^2 + 10x = 600
x^2 + 10x - 600 = 0
x^2 + 30x - 20x -600 = 0
x(x + 30) - 20(x + 30) = 0
(x +30)(x -20) =0
Therefore, either (x + 30) = 0 or (x - 20) = 0
If x + 30 = 0, then x = -30 and
If x - 20 = 0, then x = 20
Since 'x' represents the width of a rectangular plot of land it cannot be negative.
Therefore,
width of the rectangular plot of land = 20 yards
length of the rectangular plot of land= x + 10 = 30 yards</span>
Answer:
56
Step-by-step explanation:
El problema se puede transcribir en esta ecuación:
2x + x = 168
siendo x las nectarinas
sumas los términos de x:
3x=168
despejas x:
x = 168 ÷ 3
x = 56
Answer:
A.
Step-by-step explanation:
6, 11,14,14,19,20
Adding these 6 numbers we get 84.
84 / 6 = 14 = mean.
Median = middle number(s) = 14
Mode = number occurring most = 14.
One of the easier approaches would be that of x- and y-intercepts.
Setting x=0 results in y=-10; the y-intercept is (0, -10).
Setting y = 0 results in x = 5, so the x-intercept is (5,0).
Plot these 2 points. Then draw a str. line thru these points.