I'm not that smart but I think it is c I really hope It helps
Answer:
Option 3. The tennis ball began from rest and rolls at a rate of 14.7 m/s safer 1.5 seconds.
Explanation:
To know the the correct answer to the question, it is important that we know the definition of acceleration.
Acceleration can simply be defined as the rate of change of velocity with time. Mathematically, it is expressed as:
a = (v – u) /t
Where
a => acceleration
v => final velocity
u => Initial velocity
t => time
With the above information in mind, let us consider the options given in the question above to know which conform to the difinition of acceleration.
For Option 1,
We were told that the tennis ball has the following:
Distance = 4 m
Time = 1.5 s
This talks about the speed and not the acceleration.
Speed = distance / time
For Option 2,
We were only told about the average speed and nothing else.
For Option 3,
We were told that the tennis ball have the following:
Initial velocity (u) = 0 m/s
Final velocity (v) = 14.7 m/s
Time = 1.5 s
This talks about the acceleration.
a = (v – u) /t
For Option 4,
We were only told that the tennis rolls to the right at an average speed. This talks about the average velocity. We need more information like time to justify the acceleration.
From the above illustrations, option 3 gives the correct answer to the question.
Answer:
Electromagnetic force
Explanation:
There are four fundamental forces in nature:
- Gravity: it is the force that is exerted between any objects with mass. It is the weakest of all forces, so it is only relevant at planetary scales. It is always attractive, and it has an infinite range.
- Electromagnetic force: it is the force exerted between charged objects and between magnets (it is responsible for electric fields and magnetic fields). It is the 2nd strongest force, and it is the force that holds atoms in a molecule together. It can be attractive or repulsive, and it has an infinite range.
- Strong nuclear force: it is the strongest of all forces. It is responsible for holding the nucleons together inside the nucleus, and it is attractive. It has a very limited range (
), so it is relevant only at very small scales
- Weak nuclear force: it is the force responsible for radioactive decays and neutrino interactions. It also has a very short range (
Looking at all these definitions, we see that the term that defines the force that acts between charged particles is the electromagnetic force.
To solve this problem we use an amplification formula for divergent lenses

Where:
i: distance of the image to the lens
o: Distance from the object to the lens
h = height of the object
h '= height of the image


h '= 6 mm
The height is 6 mm
Answer:
If an object is electrically neutral it has no net charge becuase it has the same number of protons as it does electrons, which are opposite charges that offset each other. No, that just means that the sum of all its positive and negative amounts of charge equals zero.