Answer:
a) The concentration of drug in the bottle is 9.8 mg/ml
b) 0.15 ml drug solution + 1.85 ml saline.
c) 4.9 × 10⁻⁵ mol/l
Explanation:
Hi there!
a) The concentration of the drug in the bottle is 294 mg/ 30.0 ml = 9.8 mg/ml
b) The drug has to be administrated at a dose of 0.0210 mg/ kg body mass. Then, the total mass of drug that there should be in the injection for a person of 70 kg will be:
0.0210 mg/kg-body mass * 70 kg = 1.47 mg drug.
The volume of solution that contains that mass of drug can be calculated using the value of the concentration calculated in a)
If 9.8 mg of the drug is contained in 1 ml of solution, then 1.47 mg drug will be present in (1.47 mg * 1 ml/ 9.8 mg) 0.15 ml.
To prepare the injection, you should take 0.15 ml of the concentrated drug solution and (2.0 ml - 0.15 ml) 1.85 ml saline
c) In the injection there is a concentration of (1.47 mg / 2.0 ml) 0.735 mg/ml.
Let´s convert it to molarity:
0.735 mg/ml * 1000 ml/l * 0.001 g/mg* 1 mol/ 15000 g = 4.9 × 10⁻⁵ mol/l
The SI unit for temperature is Kelvin.
V1M1 = V2M2
<span>V1 × 2.5 = 1 × 0.75,
so V1 = 0.75/2.5
= 0.3 </span>
Answer:
It should be 1. 1.2 X 10^24
Explanation:
1 moles Carbon to grams = 12.0107 grams
2 moles Carbon to grams = 24.0214 grams
3 moles Carbon to grams = 36.0321 grams
4 moles Carbon to grams = 48.0428 grams
5 moles Carbon to grams = 60.0535 grams
6 moles Carbon to grams = 72.0642 grams
7 moles Carbon to grams = 84.0749 grams
8 moles Carbon to grams = 96.0856 grams
9 moles Carbon to grams = 108.0963 grams
10 moles Carbon to grams = 120.107 grams