Answer:
Weight is what you get when a certain amount of gravity is acting on that mass, and something, like the surface of a planet, is resisting that action. In space, when falling freely, there's nothing resisting the pull of gravity so weight disappears. Mass however stays.
hope this helps u
Explanation:
Plasma...I believe is always a good conductor of electricity. I was tempted to say a solid, but not all solids are the same in composition and that goes for liquid and gas as well.
Hopefully this helped and good luck.
Answer:
800pa
Explanation:
There are many students who can not get answers step by step and on time
So there are a wats up group where you can get help step by step and well explained by the trusted experts.
just join
post question
get Instant answer
Answer:
The answers are options B,D and E
Explanation:
B) The particles in the liquid are slowly overcoming the forces of attraction and spreading out due to the thermal energy they are absorbing. This makes the liquid less dense as it slowly changes into a gas after reaching its boiling point.
D) The particles start absorbing the energy form the surroundings as latent heat of evaporation. They need this energy to overcome the strong forces of attraction between particles to change into the gaseous state
E) The particles have spaced out due to the thermal energy absorbed, making the liquid lighter and it rises upwards.
Answer:
A(3.56m)
Explanation:
We have a conservation of energy problem here as well. Potential energy is being converted into linear kinetic energy and rotational kinetic energy.
We are given ω= 4.27rad/s, so v = ωr, which is 6.832 m/s. Place your coordinate system at top of the hill so E initial is 0.
Ef= Ug+Klin+Krot= -mgh+1/2mv^2+1/2Iω^2
Since it is a solid uniform disk I= 1/2MR^2, so Krot will be 1/4Mv^2(r^2ω^2= v^2).
Ef= -mgh+3/4mv^2
Since Ef=Ei=0
Mgh=3/4mv^2
gh=3/4v^2
h=0.75v^2/g
plug in givens to get h= 3.57m