To solve this problem it is necessary to consider two concepts. The first of these is the flow rate that can be defined as the volumetric quantity that a channel travels in a given time. The flow rate can also be calculated from the Area and speed, that is,
Q = V*A
Where,
A= Cross-sectional Area
V = Velocity
The second concept related to the calculation of this problem is continuity, which is defined as the proportion that exists between the input channel and the output channel. It is understood as well as the geometric section of entry and exit, defined as,


Our values are given as,


Re-arrange the equation to find the first ratio of rates we have:



The second ratio of rates is



Decomposing - When plants and animals die, they decompose. This process uses up oxygen and releases carbon dioxide. Rusting - This is also called oxidation. When things rust they use up oxygen.
The total amount of energy stays the same, but throughout the ride, the kinetic energy and the potential energy change, still adding up to the same number. At the top of the ride it has potential energy, and as it goes down the potential energy decreases and the kinetic energy increases. When it’s at the bottom of the first drop it has maxed out its kinetic energy, and minimized its potential energy. Friction slows down the car, and pushes on the cart with a force that is equal and opposite to the force being exerted in the track. The reason the track keeps going is because though it exerts and equal and opposite force the momentum of the objects is different, allowing the car to continue moving, however friction will slow it down until eventually it comes to a stop.
Hewan peliharaan, seperti ternak, memberi kita makanan, serat, dan kulit. Hewan liar, termasuk burung, ikan, serangga, dan penyerbuk, penting untuk mendukung jaring aktivitas dalam ekosistem yang berfungsi. Populasi tumbuhan dan hewan yang sehat sangat penting bagi kehidupan.