Answer:
The axial region of the body consists of the bones of the head, trunk of a vertebrate, skull, vertebral column, and thoracic cage. The human skeleton consists of 80 bones.
Explanation:
The axial region of the body consists of the bones of the head, trunk of a vertebrate, skull, vertebral column, and thoracic cage. The human skeleton consists of 80 bones.
It is composed of the following six parts:
1. Skull (22 bones)
2. Ossicles of the middle ear
3. Hyoid bone
4. Rib cage
5. Sternum
6. Vertebral column
The axial region of the body forms the vertical axis of the body as the axial skeleton supports the head, neck, back, and chest.
Answer:
a) The work required to stretch the spring from 20 centimeters to 25 centimeters is 0.313 joules, b) The area of the region enclosed by one loop of the curve
is
.
Explanation:
a) The work, measured in joules, is a physical variable represented by the following integral:

Where
,
- Initial and final position, respectively, measured in meters.
- Force as a function of position, measured in newtons.
Given that
and the fact that
when
, the spring constant (
), measured in newtons per meter, is:



Now, the work function is obtained:

![W = \frac{1}{2}\cdot \left(250\,\frac{N}{m} \right)\cdot [(0.05\,m)^{2}-(0.00\,m)^{2}]](https://tex.z-dn.net/?f=W%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%5Cleft%28250%5C%2C%5Cfrac%7BN%7D%7Bm%7D%20%5Cright%29%5Ccdot%20%5B%280.05%5C%2Cm%29%5E%7B2%7D-%280.00%5C%2Cm%29%5E%7B2%7D%5D)

The work required to stretch the spring from 20 centimeters to 25 centimeters is 0.313 joules.
b) Let be
. The area of the region enclosed by one loop of the curve is given by the following integral:
![A = \int\limits^{2\pi}_0 {[r(\theta)]^{2}} \, d\theta](https://tex.z-dn.net/?f=A%20%3D%20%5Cint%5Climits%5E%7B2%5Cpi%7D_0%20%7B%5Br%28%5Ctheta%29%5D%5E%7B2%7D%7D%20%5C%2C%20d%5Ctheta)

By using trigonometrical identities, the integral is further simplified:





The area of the region enclosed by one loop of the curve
is
.
Answer:
because the mass of the apple is very less compared to the mass of earth. Due to less mass the apple cannot produce noticable acceleration in the earth but the earth which has more mass produces noticable acceleration in the apple. thus we can see apple falling on towards the earth but we cannot see earth moving towards the apple.
What is your question exactly? I'm confused?
The energy conservation and trigonometry we can find the results for the questions about the movement of the acrobat are;
a) The maximum speed is v = 4.89 m / s
b) The maximum height is h = 1.22 m
The energy conservation is one of the most fundamental principles of physics, stable that if there are no friction forces the mechanistic energy remains constant. Mechanical energy is the sum of the kinetic energy plus the potential energies.
Em = K + U
Let's write the energy in two points.
Starting point. Highest part of the oscillation
Em₀ = U = m g h
Final point. Lower part of the movement
= K = ½ m v²
Energy is conserved.
Emo =
m g h = ½ m v²
v² = 2 gh
Let's use trigonometry to find the height, see attached.
h = L - L cos θ
h = L (1- cos θ)
They indicate that the initial angle is tea = 48º and the length is L = 3.7 m, let's calculate.
h = 3.7 (1- cos 48)
h = 1.22 m
this is the maximum height of the movement.
Let's calculate the velocity.
v = 4.89 m / s
In conclusion using the conservation of energy and trigonometry we can find the results for the questions about the movement of the acrobat are;
a) The maximum speed is v = 4.89 m / s
b) The maximum height is h = 1.22 m
Learn more here: brainly.com/question/13010190