Explanation:
It is given that,
Mass of the runner, m = 70 kg
Length of the tendon, l = 15 cm = 0.15 m
Area of cross section, 
Part A,
Let the runner's Achilles tendon stretch if the force on it is 8.0 times his weight, F = 8 mg
Young's modulus for tendon is, 
The formula of the Young modulus is given by :



Part B,
The fraction of the tendon's length does this correspond is given by :


Hence, this is the required solution.
As nouns the difference between magnet and lodestone
is that magnet is a piece of material that attracts some metals by magnetism while lodestone is a naturally occurring magnet.
Explanation:
Liquids also exert pressure in all directions on the walls of the container they are stored in. We see water coming out from leaking pipes and taps. ... Gases (Air) also exert pressure in all directions
Answer:
The maximum speed that the truck can have and still be stopped by the 100m road is the speed that it can go and be stopped at exactly 100m. Since there is no friction, this problem is similar to a projectile problem. You can think of the problem as being a ball tossed into the air except here you know the highest point and you are looking for the initial velocity needed to reach that point. Also, in this problem, because there is an incline, the value of the acceleration due to gravity is not simply g; it is the component of gravity acting parallel to the incline. Since we are working parallel to the plane, also keep in mind that the highest point is given in the problem as 100m. Solving for the initial velocity needed to have the truck stop after 100m, you should find that the maximum velocity the truck can have and be stopped by the road is 18.5 m/s.
Explanation:
Answer:
F = 1.63 x 10⁻⁹ N
Explanation:
Complete question is as follows:
The diagram below shows two bowling balls, A and B, each having a mass of 7.0 kg, placed 2.00 m apart between their centers. Find the magnitude of Gravitational Force?
Answer:
The gravitational force is given by Newton's Gravitational Law as follows:
F = Gm₁m₂/r²
where,
F = Gravitational Force = ?
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
m₁ = m₂ = mass of each ball = 7 kg
r = distance between balls = 2 m
Therefore,
F = (6.67 x 10⁻¹¹ N.m²/kg²)(7 kg)(7 kg)/(2 m)²
<u>F = 1.63 x 10⁻⁹ N</u>