I think it false. Sorry if i'm wrong.
<h2>
Option 3, 216 m is the correct answer.</h2>
Explanation:
We have initial velocity, u = 15 m/s
Time, t = 12 seconds
Final velocity, v = 21 m/s
We have equation of motion v = u + at
Substituting
21 = 15 + a x 12
a = 0.5 m/s²
Now we have equation of motion v² = u² + 2as
21² = 15² + 2 x 0.5 x s
s = 216 m
Displacement = 216 m
Option 3, 216 m is the correct answer.
Answer:
The jumper is in freefall for 12.447 seconds.
Explanation:
Let's start by calculating how far the jumper falls.
Initial height (on cliff) = 910 m
Final height after freefall = 150 m
Distance the jumper falls in freefall = 910 - 150 = 760 m
We can now use the equation of motion below to solve for the time:

here. acceleration = 9.81 m/s (due to gravity)
initial speed (u) = 0 m/s (because vertical speed is 0 at the start)
and distance (s) = 760 meters (as calculated above)
So for speed we get:


t = 12.447 seconds
Answer:
The direction of the momentum of the large ball after the collision with respect to east is 146.58°.
Explanation:
Given that,
Mass of large ball = 3.0 kg
Mass of steel ball = 1.0 kg
Velocity = 3.0 kg
After collision,
Velocity = 2.0 m/s
Using conservation of momentum




The direction of the momentum



The direction of the momentum with respect to east

Hence, The direction of the momentum of the large ball after the collision with respect to east is 146.58°.