When the body touches the ground two types of Forces will be generated. The Force product of the weight and the Normal Force. This is basically explained in Newton's third law in which we have that for every action there must also be a reaction. If the Force of the weight is pointing towards the earth, the reaction Force of the block will be opposite, that is, upwards and will be equivalent to its weight:
F = mg
Where,
m = mass
g = Gravitational acceleration
F = 5*9.8
F = 49N
Therefore the correct answer is E.
When distance<span> is increased the amount of </span>force<span> needed will depend on the </span>mass<span> of the object. </span>
Answer:
4.5 W
Explanation:
Applying,
P = V²/(R₁+R₂).................. Equation 1
Where P = Power, V = Voltage, R₁ and R₂ = values of the two resistor.
From the question,
Given: V = 9.00 V, R₁ = 7.00 Ω, R₂ = 11.00 Ω
Substitute these values into equation 1
P = 9²/(7+11)
P = 81/(18)
P = 4.5 Watt.
Hence the power dessipated by the two resistors is 4.5 watt
<span>
The needle of a compass will always lies along the magnetic
field lines of the earth.
A magnetic declination at a point on the earth’s surface
equal to zero implies that
the horizontal component of the earth’s magnetic field line
at that specific point lies along
the line of the north-south magnetic poles. </span>
The presence of a
current-carrying wire creates an additional <span>
magnetic field that combines with the earth’s magnetic field.
Since magnetic
<span>fields are vector quantities, therefore the magnetic field of
the earth and the magnetic field of the vertical wire must be
combined vectorially. </span></span>
<span>
Where:</span>
B1 = magnetic field of
the earth along the x-axis = 0.45 × 10 ⁻ ⁴ T
B2 = magnetic field due to
the straight vertical wire along the y-axis
We can calculate for B2
using Amperes Law:
B2 = μ₀ i / [ 2 π R ]
B2 = [ 4π × 10 ⁻ ⁷ T • m / A ] ( 36 A ) / [ 2 π (0.21 m ) ] <span>
B2 = 5.97 × 10 ⁻ ⁵ T = 0.60 × 10 ⁻ ⁴ T </span>
The angle can be
calculated using tan function:<span>
tan θ = y / x = B₂ / B₁ = 0.60 × 10 ⁻ ⁴ T / 0.45 × 10 ⁻ ⁴ T <span>
tan θ = 1.326</span></span>
θ = 53°
<span>
<span>The compass needle points along the direction of 53° west of
north.</span></span>