Impulse: a certain amount of force you apply for an amount of time.
Impulse: F*t where F= Force & t=time
Momentum: increasing forward motion.
A ball rolling down a slide gains momentum
p=mv where m=mass and v=velocity
Hope it helps!
~Just an emotional teen who listens to music
Answer:
It traveled 4 centimeters.
Explanation:
In a speed versus time graph, the distance travelled is given by the area under the graph.
In this graph we have the following:
- The speed of the object is v = 1 cm/s between time t = 0 s and t = 4 s
- The speed of the object is v = 0 cm/s between time t = 4 s and t = 8 s
Since the speed in the second part is zero, the distance travelled in the second part is zero. So, the only distance travelled by the object is the distance travelled during the first part, which is equal to the area of the first rectangle:

Answer:
Winner wins by 0.969 s
Explanation:
For the Porche:
Given:
Displacement of Porsche s = 400 m
Acceleration of Porsche a = 3.4 m/s^2
From Newton's second equation of motion,
(u = 0 as the car was initially at rest)
Substituting the values into the equation, we have

= 235.29 / 3.4
t = 15.33 s
For the Honda:
Displacement of Honda = 310 m
Acceleration of Honda = 3 m/s^2
Applying Newton's second equation of motion
(u = 0 for same reason)
Substituting the values into the equation, we obtain

= 620 / 3
t = 14.37 s
Hence
The winner (honda) wins by a time interval of = 15.33 - 14.37
=0.969 s
The physical model of the sun's interior has been confirmed by observations of neutrino and seismic vibrations.
<u>Explanation:</u>
Sun's interior is composed of very high temperature and solar flares. So it is very difficult to understand the interior of the sun. But by using the vibrations of neutrino and seismic waves emitted by the solar waves, the physical model can be assumed.
As the interior of the sun performs continuous chain of hydrogen cycle. So the continuous emission of energy from the chain reaction releases neutrino. So these vibrations in neutrino and seismic vibrations, the physical model can be assumed easily.
Answer:
<h2>The pin's final velocity is 5m/s</h2>
Explanation:
Step one:
given data
mass of ball m1=5kg
initial velocity of ball u1=10m/s
mass of pin m2=2kg
initial velocity of pin u2= 0m/s
final velocity of ball v2=8m/s
final velocity of pin v2=?
Step two:
The expression for elastic collision is given as
m1u1+m2u2=m1v1+m2v2
substituting we have
5*10+2*0=5*8+2*v2
50+0=40+2v2
50-40=2v2
10=2v2
divide both sides by 2
v2=10/2
v2=5m/s
The pin's final velocity is 5m/s