Answer:
The energy entering, reflecting, absorbed, and emitted by the earth system are the components of the Earth's radiation budget.
Explanation:
I hope this helps also I hope you have a great day and a new year.
Answer:
The speed is 24 
Explanation:
A wave is a disturbance that propagates through a certain medium or in a vacuum, with transport of energy but without transport of matter.
The wavelength is the minimum distance between two successive points of the wave that are in the same state of vibration. It is expressed in units of length (m).
Frequency is the number of vibrations that occur in a unit of time. Its unit is s⁻¹ or hertz (Hz).
The speed of propagation is the speed with which the wave propagates in the middle, that is, the magnitude that measures the speed at which the wave disturbance propagates along its displacement. Relate wavelength (λ) and frequency (f) inversely proportionally using the following equation:
v = f * λ.
In this case, λ= 8 meter and f= 3 Hz
Then:
v= 3 Hz* 8 meter
So:
v= 24 
<u><em>The speed is 24 </em></u>
<u><em></em></u>
Answer:
The final velocity of the car is 26.65 m/s.
Explanation:
Given;
acceleration of the racecar, a = 6.5 m/s²
initial velocity of the car, u = 0
time of motion, t = 4.1 s
The final velocity of the car is given by;
v = u + at
where;
v is the final velocity of the car
suvstitute the givens
v = 0 + (6.5)(4.1)
v = 26.65 m/s.
Therefore, the final velocity of the car is 26.65 m/s.
I think it is A. but then you can also produce your own energy
(a) Let's convert the final speed of the car in m/s:

The kinetic energy of the car at t=19 s is

(b) The average power delivered by the engine of the car during the 19 s is equal to the work done by the engine divided by the time interval:

But the work done is equal to the increase in kinetic energy of the car, and since its initial kinetic energy is zero (because the car starts from rest), this translates into

(c) The instantaneous power is given by

where F is the force exerted by the engine, equal to F=ma.
So we need to find the acceleration first:

And the problem says this acceleration is constant during the motion, so now we can calculate the instantaneous power at t=19 s: